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ABSTRACT

In recent years, social networking platforms have developed
into extraordinary channels for spreading and consuming in-
formation. Along with the rise of such infrastructure, there
is continuous progress on techniques for spreading informa-
tion effectively through influential users. In many applica-
tions, one is restricted to select influencers from a set of
users who engaged with the topic being promoted, and due
to the structure of social networks, these users often rank
low in terms of their influence potential. An alternative ap-
proach one can consider is an adaptive method which selects
users in a manner which targets their influential neighbors.
The advantage of such an approach is that it leverages the
friendship paradox in social networks: while users are often
not influential, they often know someone who is.

Despite the various complexities in such optimization prob-
lems, we show that scalable adaptive seeding is achievable.
In particular, we develop algorithms for linear influence mod-
els with provable approximation guarantees that can be grace-
fully parallelized. To show the effectiveness of our methods
we collected data from various verticals social network users
follow. For each vertical, we collected data on the users who
responded to a certain post as well as their neighbors, and
applied our methods on this data. Our experiments show
that adaptive seeding is scalable, and importantly, that it
obtains dramatic improvements over standard approaches
of information dissemination.

1. INTRODUCTION

The massive adoption of social networking services in re-
cent years creates a unique platform for promoting ideas and
spreading information. Communication through online so-
cial networks leaves traces of behavioral data which allow
observing, predicting and even engineering processes of in-
formation diffusion. First posed by Domingos and Richard-
son [7, 25] and elegantly formulated and further developed
by Kempe, Kleinberg, and Tardos [14], influence mazimiza-
tion is the algorithmic challenge of selecting a fixed number
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Figure 1: CDF of the degree distribution of users who liked

a post by Kiva on Facebook and that of their friends.

of individuals who can serve as early adopters of a new idea,
product, or technology in a manner that will trigger a large
cascade in the social network.

In many cases where influence maximization methods are
applied one cannot select any user in the network but is
limited to some subset of users. As an example, consider
an online retailer who wishes to promote a product through
word-of-mouth by rewarding influential customers who pur-
chased the product. The retailer is then limited to select
influential users from the set of users who purchased the
product. In general, we will call the core set the set of users
an influence maximization campaign can access. When the
goal is to select influential users from the core set, the laws
that govern social networks can lead to poor outcomes. Due
to the heavy-tailed degree distribution of social networks,
high degree nodes are rare, and since influence maximiza-
tion techniques often depend on the ability to select high
degree nodes, a naive application of influence maximization
techniques to the core set can become ineffective.

An adaptive approach. An alternative approach to spend-
ing the entire budget on the core set is an adaptive two-stage
approach. In the first stage, one can spend a fraction of the
budget on the core users so that they invite their friends to
participate in the campaign, then in the second stage spend
the rest of the budget on the influential friends who hopefully
have arrived. The idea behind this approach is to leverage
a structural phenomenon in social networks known as the
friendship paradox [9]. Intuitively, the friendship paradox
says that individuals are not likely to have many friends,
but they likely have a friend that does (“your friends have
more friends than you”). In Figure 1 we give an example of
such an effect by plotting a CDF of the degree distribution
of a core set of users who responded to a post on Facebook
and the degree distribution of their friends. Remarkably,



there are also formal guarantees of such effects. Recent work
shows that for any network that has a power law degree dis-
tribution and a small fraction of random edges, there is an
asymptotic gap between the average degree of small samples
of nodes and that of their neighbors, with constant proba-
bility [18]. The implication is that when considering the
core users (e.g. those who visit the online store) as random
samples from a social network, any algorithm which can use
their neighbors as influencers will have dramatic improve-
ment over the direct application of influence maximization.

Warmup. Suppose we are given a network, a random set of
core users X and a budget k, and the goal is to select a sub-
set of nodes in X of size t < k which has the most influential
set of neighbors of size k —t. For simplicity, assume for now
that the influence of a set is simply its average degree. If
we take the k/2 highest degree neighbors of X, then surely
there is a set S of size at most k/2 in X connected to this
set, and selecting S would be a two-approximation to this
problem. In comparison, the standard approach of influence
maximization is to select the k highest degree nodes in X.
Thus, standard influence maximization would have k of the
most influential nodes in X while the approximation algo-
rithm we propose has k/2 of the most influential nodes from
its set of neighbors. How much better or worse is it to use
this approach over the standard one? If the network has a
power-law degree distribution with a small fraction of ran-
dom edges, and influence is measured in terms of sum of de-
grees of a set, then the results of [18] discussed above imply
that the two-stage approach which allows seeding neighbors
can do asymptotically (in the size of the network) better.
Thus, at least intuitively, it looks as if two-stage approaches
may be worth investigating.

In this paper, our goal is to study the potential benefits
of adaptive approaches for influence maximization. We are
largely motivated by the following question.

Can adaptive optimization lead to significant improvements
in influence mazximization?

To study this question we use the adaptive seeding model
recently formalized in [27]. The main distinctions from the
caricature model in the warmup problem above is that in
adaptive seeding the core set X can be arbitrary (it does not
have to be random), and every neighbor of X is assumed to
arrive with some independent probability. These probabili-
ties are used to model the uncertainty we have in that the
neighbors would be interested in promoting the product, as
they are not in the core set. The goal in adaptive seeding
is to select a subset of nodes in X such that, in expectation
over all possible arrivals of its neighbors, one can select a
maximally influential set of neighbors with the remaining
budget.! It is worth noting that using X to be the entire set
of nodes in the network we get the Kempe-Kleinberg-Tardos
model [14], and thus adaptive seeding can be seen as a gen-
eralization of this model.

The model can be extended to the case where nodes take on different costs,
and results we present here largely generalize to such settings as well. Although
it seems quite plausible that the probability of attracting neighbors could de-
pend on the rewards they receive, the model deliberately assumes unit costs,
consistent with the celebrated Kempe-Kleinberg-Tardos model [14]. Of course,
if the likelihood of becoming an early adopter is inversely proportional to one’s
influence, then any influence maximization model loses substance.

Scalability. One of the challenges in adaptive seeding is
scalability. This is largely due to the stochastic nature of the
problem derived from uncertainty about arrival of neighbors.
The main result in [27] is a constant factor approximation
algorithm for well-studied influence models such as indepen-
dent cascade and linear threshold which is, at large, a the-
oretical triumph. These algorithms rely on various forms
of sampling, which lead to a significant blowup in the in-
put size. While such techniques provide strong theoretical
guarantees, for social network data sets which are often ei-
ther large or massive, such approaches are inapplicable. The
main technical challenge we address in this work is how to
design scalable adaptive optimization techniques for influ-
ence maximization which do not require sampling.

Beyond random users. The motivation for the adaptive
approach hinges on the friendship paradox, but what if the
core set is not a random sample? The results in [18] hold
when the core set of users is random but since users who
follow a particular topic are not a random sample of the
network, we must somehow evaluate adaptive seeding on
representative data sets. The experimental challenge is to
estimate the prominence of high degree neighbors in settings
that are typical of viral marketing campaigns. Figure 1 is a
foreshadowing of the experimental methods we used to show
that an effect similar to the friendship paradox exists in such
cases as well.

Main results. Our main results in this paper show that
adaptive seeding is a scalable approach which can dramat-
ically improve upon standard approaches of influence max-
imization. We present a general method that enables de-
signing adaptive seeding algorithms in a manner that avoids
sampling, and thus makes adaptive seeding scalable to large
size graphs. We use this approach as a basis for design-
ing two algorithms, both achieving an approximation ratio
of (1 — 1/e) for the adaptive problem. The first algorithm
is implemented through a linear program, which proves to
be extremely efficient over instances where there is a large
budget. The second approach is a combinatorial algorithm
with the same approximation guarantee which can be easily
parallelized, has good theoretical guarantees on its running
time and does well on instances with smaller budgets. The
guarantees of our algorithms hold for linear models of in-
fluence, i.e. models for which the influence of a set can be
expressed as the sum of the influence of its members. While
this class does not include models such as the independent
cascade and the linear threshold model, it includes the well-
studied voter model [12, 8] and measures such as node de-
gree, click-through-rate or retweet measures of users which
serve as natural proxies of influence in many settings [30].
In comparison to submodular influence functions, the rel-
ative simplicity of linear models allows making substantial
progress on this challenging problem.

We then use these algorithms to conduct a series of ex-
periments to show the potential of adaptive approaches for
influence maximization both on synthetic and real social net-
works. The main component of the experiments involved
collecting publicly available data from Facebook on users
who expressed interest (“liked”) a certain post from a topic
they follow and data on their friends. The premise here is
that such users mimic potential participants in a viral mar-
keting campaign. The results on these data sets suggest



that adaptive seeding can have dramatic improvements over
standard influence maximization methods.

Paper organization. We begin by formally describing the
model and the assumptions we make in the following sec-
tion. In Section 3 we describe the reduction of the adaptive
seeding problem to a non-adaptive relaxation. In Section 4
we describe our non-adaptive algorithms for adaptive seed-
ing. In Section 5 we describe our experiments, and conclude
with a brief discussion on related work.

2. MODEL

Given a graph G = (V, E), for anode v € V we denote by
N (u) the neighborhood of v. By extension, for any subset of
nodes S C V, N(S) = U,cg NV (v) will denote the neighbor-
hood of S. The notion of influence in the graph is captured
by a function f : 2!¥! — R, mapping a subset of nodes to
a non-negative influence value.

The adaptive seeding model. The input of the adaptive
seeding problem is a core set of nodes X C V and for any
node u € N(X) a probability p, that u realizes if one of
its neighbor in X is seeded. We will write m = |X| and
n = |NM(X)| the parameters controlling the input size. The
seeding process is the following:

1. Seeding: the seeder selects a subset of nodes S C X in
the core set.

2. Realization of the neighbors: every node u € N'(S) re-
alizes independently with probability p,. We denote
by R C N(S) the subset of nodes that is realized dur-
ing this stage.

3. Influence maximization: the seeder selects the set of
nodes T' C R that maximizes the influence function f.

There is a budget constraint k£ on the total number of
nodes that can be selected: S and T must satisfy |S|+|T'| <
k. The seeder chooses the set S before observing the real-
ization R and thus wishes to select optimally in expectation
over all such possible realizations. Formally, the objective
can be stated as:

max > pr max  f(T)
RCN(S)  |T|<h_|5| (1)
st |5 <k

where pr is the probability that the set R realizes, pr =
[ucrpu HueN(S)\R(l — Pu)-

It is important to note that the process through which
nodes arrive in the second stage is not an influence process.
The nodes in the second stage arrive if they are willing to
spread information in exchange for a unit of the budget.
Only when they have arrived does the influence process oc-
cur. This process is encoded in the influence function and
occurs after the influence maximization stage without incen-
tivizing nodes along the propagation path. In general, the
idea of a two-stage (or in general, multi-stage) approach is
to use the nodes who arrive in the first stage to recruit influ-
ential users who can be incentivized to spread information.
In standard influence maximization, the nodes who are not
in the core set do not receive incentives to propagate infor-
mation, and cascades tend to die off quickly [29, 3, 10, 6].

Influence functions. In this paper we focus on linear (or
additive) influence models: in these models the value of a
subset of nodes can be expressed as a weighted sum of their
individual influence. One important example of such models
is the voter model [26] used to represent the spread of opin-
ions in a social network: at each time step, a node adopts an
opinion with a probability equal to the fraction of its neigh-
bors sharing this opinion at the previous time step. For-
mally, this can be written as a discrete-time Markov chain
over opinion configurations of the network. In this model in-
fluence maximization amounts to “converting” the optimal
subset of nodes to a given opinion at the initial time so as
to maximize the number of converts after a given period of
time. Remarkably, a simple analysis shows that under this
model, the influence function f is additive:

VSCV, f(S) =) w (2)

ues

where w,,,u € V are weights which can be easily computed
from the powers of the transition matrix of the Markov
chain. This observation led to the development of fast algo-
rithms for influence maximization under the voter model [3].

NP-Hardness. In contrast to standard influence maxi-
mization, adaptive seeding is already NP-Hard even for the
simplest influence functions such as f(S) = |S| and when all
probabilities are one. We discuss this in the full version of
the paper [13].

3. NON-ADAPTIVE OPTIMIZATION

The challenging aspect of the adaptive seeding problem
expressed in Equation 1 is its adaptivity: a seed set must
be selected during the first stage such that in expectation
a high influence value can be reached when adaptively se-
lecting nodes on the second stage. A standard approach in
stochastic optimization for overcoming this challenge is to
use sampling to estimate the expectation of the influence
value reachable on the second stage. However, as will be
discussed in Section 5, this approach quickly becomes infea-
sible even with modest size graphs.

In this section we develop an approach which avoids sam-
pling and allows designing adaptive seeding algorithms that
can be applied to large graphs. We show that for addi-
tive influence functions one can optimize a relaxation of the
problem which we refer to as the non-adaptive version of
the problem. After defining the non-adaptive version, we
show in sections 3.1 that the optimal solution for the non-
adaptive version is an upper bound on the optimal solution
of the adaptive seeding problem. We then argue in Sec-
tion 3.2 that any solution to the non-adaptive version of the
problem can be converted to an adaptive solution, losing
an arbitrarily small factor in the approximation ratio. To-
gether, this implies that one can design algorithms for the
non-adaptive problem instead, as we do in Section 4.

Non-adaptive policies. We say that a policy is non-
adaptive if it selects a set of nodes S C X to be seeded in
the first stage and a vector of probabilities q € [0,1]", such
that each neighbor uw of S which realizes is included in the
solution independently with probability g,. The constraint
will now be that the budget is only respected in expectation,
i.e. |S| 4+ pTq < k. Formally the optimization problem for



non-adaptive policies can be written as:

rglca;(c Z ( H Puqu H (1 _quu))f(R)

q€0,1]" RCN(X) weR uEN(X)\R (3)
st. [S|+p a<k, g <1{ueN(S)}

where we denote by 1{E} the indicator variable of the event
E. Note that because of the condition ¢, < 1{u € N(S)},
the summand associated with R in (3) vanishes whenever
R contains u € N(X) \ N(S). Hence, the summation is
restricted to R C N(S) as in (1).
3.1 Adaptivity Gap

We will now justify the use of non-adaptive strategies
by showing that the optimal solution for this form of non-

adaptive strategies yields a higher value than adaptive ones.
For brevity, given a probability vector 7 € [0, 1]™ we write:

Fmy= > (]~ 1]

RCN(X) \u€R  weN(X)\R

(I=ma) | f(R)  (4)

as well as p®q to denote the component-wise multiplication
between vectors p and q. Finally, we write F4 = {S C
X |8 <k}, and Fnva = {(S,q),[5| + p'a < k,qu <
1iuen(s)y} to denote the feasible regions of the adaptive
and non-adaptive problems, respectively.

PROPOSITION 1. For additive functions given by (2), the
value of the optimal adaptive policy is upper bounded by the
optimal non-adaptive policy:

<
max > pr max f(T)< max F(p@aq)
RCN(S) |T|<k—|S| qel0,1]™

s.t. S€ Fa s.t. (S,q) € Fna

The proof of this proposition can be found in the full ver-
sion of the paper [13] and relies on the following fact: the
optimal adaptive policy can be written as a feasible non-
adaptive policy, hence it provides a lower bound on the value
of the optimal non-adaptive policy.

3.2 From Non-Adaptive to Adaptive Solutions

From the above proposition we now know that optimal
non-adaptive solutions have higher values than adaptive so-
lutions. Given a non-adaptive solution (S,q), a possible
scheme would be to use S as an adaptive solution. But since
(S,q) is a solution to the non-adaptive problem, Proposi-
tion 1 does not provide any guarantee on how well S per-
forms as an adaptive solution.

However, we show that from a non-adaptive solution (.5, q),
we can obtain a lower bound on the adaptive value of S, that
is, the expected influence attainable in expectation over all
possible arrivals of neighbors of S. Starting from .S, in every
realization of neighbors R, sample every node u € RNN(S)
with probability ¢., to obtain a random set of nodes Ir C
RNS. (S,q) being a non-adaptive solution, it could be that
selecting Ir exceeds our budget. Indeed, the only guarantee
that we have is that |S| + E[|Ir|] < k. As a consequence,
an adaptive solution starting from S might not be able to
select Ir on the second stage.

Fortunately, the probability of exceeding the budget is
small enough and with high probability Ir will be feasible.
This is exploited in [28] to design a randomized rounding

method with approximation guarantees. These rounding
methods are called contention resolution schemes. Theo-
rem 1.3 of this paper gives us a contention resolution scheme
which will compute from q and for any realization R a fea-
sible set Ir, such that:

Er[f(Ir)] > (1 —¢)F(q) (5)

What this means is that starting from a non-adaptive so-
lution (S, q), there is a way to construct a random feasible
subset on the second stage such that in expectation, this set
attains almost the same influence value as the non-adaptive
solution. Since the adaptive solution starting from S will
select optimally from the realizations R C N (S), Ex[f(Ir)]
provides a lower bound on the adaptive value of S that we
denote by A(S).

More precisely, denoting by OPT 4 the optimal value of
the adaptive problem (1), we have the following proposi-
tion whose proof can be found in the full version of this
paper [13].

PROPOSITION 2. Let (S, q) be an a-approzimate solution
to the non-adaptive problem (3), then A(S) > aOPT4.

4. ALGORITHMS

Section 3 shows that the adaptive seeding problem re-
duces to the non-adaptive problem. We will now discuss
two approaches to construct approximate non-adaptive so-
lutions. The first is an LP-based approach, and the second is
a combinatorial algorithm. Both approaches have the same
(1 —1/e) approximation ratio, which is then translated to a
(1—1/e) approximation ratio for the adaptive seeding prob-
lem (1) via Proposition 2. As we will show in Section 5,
both algorithms have their advantages and disadvantages in
terms of scalability.

4.1 An LP-Based Approach

Note that due to linearity of expectation, for a linear func-
tion f of the form given by (2) we have:

Z wul{ueR}:|
(6)

F(p) =Er[f(R)] =Er

ueN(X)
= Y wRueR= Y pan
uweN(X) weN(X)

Thus, the non-adaptive optimization problem (3) can be
written as:

Isngax Z PufuWy
qelo,1]™ ueN (X)

st. |S|+p a<k, qu <1{uecN(S)}

The choice of the set S can be relaxed by introducing a
variable X, € [0, 1] for each v € X. We obtain the following
LP for the adaptive seeding problem:

H[la.X] Z PuGuWy
€[0,1]™
:\le[O,l]m weEN(X)

s.t. Z A +p q<k, qu < Z Av
veX veEN (u)

An optimal solution to the above problem can be found
in polynomial time using standard LP-solvers. The solu-
tion returned by the LP is fractional, and requires a round-
ing procedure to return a feasible solution to our problem,



where S is integral. To round the solution we use the pipage
rounding method [2]. We defer the details to the full version
of the paper [13].

LEMMA 1. For ADAPTIVESEEDING-LP defined in (7), any
fractional solution (X, q) € [0,1]™ x [0, 1]™ can be rounded to

an integral solution X € {0,1}™ s.t. (1-1/e)F(poq) < A(N)
in O(m +n) steps.

4.2 A Combinatorial Algorithm

In this section, we introduce a combinatorial algorithm
with an identical approximation guarantee to the LP-based
approach. However, its running time, stated in Proposition 5
can be better than the one given by LP solvers depending
on the relative sizes of the budget and the number of nodes
in the graph. Furthermore, as we discuss at the end of this
section, this algorithm is amenable to parallelization.

The main idea is to reduce the problem to a monotone
submodular maximization problem and apply a variant of
the celebrated greedy algorithm [24]. In contrast to stan-
dard influence maximization, the submodularity of the non-
adaptive seeding problem is not simply a consequence of
properties of the influence function; it also strongly relies on
the combinatorial structure of the two-stage optimization.

Intuitively, we can think of our problem as trying to find
a set S in the first stage, for which the nodes that can be
seeded on the second stage have the largest possible value.
To formalize this, for a budget b € R’ used in the second
stage and a set of neighbors T' C N(X), we will use O(T,b)
to denote the solution to:

O(T,b) = max Z PuQuWy
a€(0.1] uEN(X)NT (8)
st.pq<b

The optimization problem (3) for non-adaptive policies
can now be written as:

max O(N(S),k—|S]) st. || <k (9)

We start by proving in Proposition 3 that for fixed ¢,
O(N(-),t) is submodular. This proposition relies on lem-
mas 2 and 3 about the properties of O(T,b).

LEMMA 2. Let T C N(X) and z € N(X), then O(T U
{z},b) — O(T,b) is non-decreasing in b.

The proof of this lemma can be found in the full version
of the paper [13]. The main idea consists in writing:

O(T U {z},¢) — O(T U {a},b) = /b 0y Oruay (t)dt

where 01 Or denotes the right derivative of O(T,-). For a
fixed T and b, O(T, b) defines a fractional Knapsack problem
over the set T. Knowing the form of the optimal fractional
solution, we can verify that 04Oy} > 0+ Or and obtain:

O(T U {$}7C) - O(T U {{E},b) > O(Ta C) - O(T7 b)

LEMMA 3. For any b € R™, O(T,b) is submodular in T,
T C N(X).

The proof of this lemma is more technical. For T C N(X)
and z,y € N(X)\ T, we need to show that:

O(T U{z},b) — O(T,b) > O(T U{y,z},b) — O(T' U{y},b)

This can be done by partitioning the set T" into “high value
items” (those with weight greater than w,) and “low value
items” and carefully applying Lemma 2 to the associated
subproblems. The proof is in the full version of the pa-
per [13].

Finally, Lemma 3 can be used to show Proposition 3 whose
proof can be found in the full version [13].

PROPOSITION 3. Let b € RT, then O(N(S9),b) is mono-
tone and submodular in S, S C X.

We can now use Proposition 3 to reduce (9) to a monotone
submodular maximization problem. First, we note that (9)
can be rewritten:

max O(N(9),t) st [S|+t<k (10)
teN

Intuitively, we fix ¢ arbitrarily so that the maximization
above becomes a submodular maximization problem with
fixed budget t. We then optimize over the value of ¢t. Com-
bining this observation with the greedy algorithm for mono-
tone submodular maximization [24], we obtain Algorithm 1,
whose performance guarantee is summarized in Proposition 4.

Algorithm 1 Combinatorial algorithm

1: S« 0

2: fort=1tok—1do

3: Si < @

4: fori=1to k—tdo

5: ¥ argmax,cy\s, ON(Se U {z}),t) —
O(N(Se),t)

6: St < St U {LU*}

T end for

8: if ON(S:),t) > ON(S),k —|S|) then

9: S St

10: end if

11: end for

12: return S

PROPOSITION 4. Let S be the set computed by Algorithm 1

and let us denote by A(S) the value of the adaptive policy
selecting S on the first stage. Then A(S) > (1—1/e)OPT4.

Parallelization. The algorithm described above considers
all possible ways to split the seeding budget between the
first and the second stage. For each possible split {(¢,k —
t)}+=1...k—1, the algorithm computes an approximation to
the optimal non adaptive solution that uses k — t nodes in
the first stage and ¢ nodes in the second stage, and returns
the solution for the split with the highest value (breaking
ties arbitrarily). This process can be trivially parallelized
across k — 1 machines, each performing a computation of a
single split. With slightly more effort, for any ¢ > 0 one
can parallelize over log, | . n machines at the cost of losing a
factor of € in the approximation guarantee (see full version
of the paper [13] for details).

Implementation in MapReduce. While the previous
paragraph describes how to parallelize the outer for loop of
Algorithm 1, we note that its inner loop can also be paral-
lelized in the MapReduce framework. Indeed, it corresponds
to the greedy algorithm applied to the function O (N (-),t).



The SAMPLE&PRUNE approach successfully applied in [17]
to obtain MapReduce algorithms for various submodular
maximizations can also be applied to Algorithm 1 to cast
it in the MapReduce framework. The details of the algo-
rithm can be found in the full version of the paper [13].

Algorithmic speedups. To implement Algorithm 1 effi-
ciently, the computation of the argmax on line 5 must be
dealt with carefully. O(N(S: U {z}),t) is the optimal solu-
tion to the fractional Knapsack problem (8) with budget ¢
and can be computed in time min(ﬁ, n) by iterating over
the list of nodes in N (S U {z}) in decreasing order of the
degrees. This decreasing order of N (S;) can be maintained
throughout the greedy construction of S; by:

e ordering the list of neighbors of nodes in X by decreas-
ing order of the degrees when initially constructing
the graph. This is responsible for a O(nlogn) pre-
processing time.

e when adding node z to S¢, observe that N'(S;U{z}) =
N(S:) UN({z}). Hence, if N(S:) and N ({z}) are
sorted lists, then O(N(S; U {z}),t) can be computed
in a single iteration of length min(;~—,n) where the
two sorted lists are merged on the fly.

As a consequence, the running time of line 5 is bounded
from above by mmin(p%, n). The two nested for loops are

responsible for the additional k? factor. The running time
of Algorithm 1 is summarized in Proposition 5.

PROPOSITION 5. Let pmin = min{p,,u € N(X)}, then
Algorithm 1 runs in time O(nlogn + k*m min(pi,n) .

S. EXPERIMENTS

In this section we validate the adaptive seeding approach
through experimentation. Specifically, we show that our
algorithms for adaptive seeding obtain significant improve-
ment over standard influence maximization, that these im-
provements are robust to changes in environment variables,
and that our approach is efficient in terms of running-time
and scalable to large social networks.

5.1 Experimental setup

We tested our algorithms on three types of datasets. Each
of them allows us to experiment on a different aspect of the
adaptive seeding problem. The Facebook Pages dataset that
we collected ourselves has a central place in our experiments
since it is the one which is closet to actual applications of
adaptive seeding.

Synthetic networks. Using standard models of social
networks we generated large-scale graphs to model the so-
cial network. To emulate the process of users following a
topic (the core set X) we sampled subsets of nodes at ran-
dom, and applied our algorithms on the sample and their
neighbors. The main advantage of these data sets is that
they allow us to generate graphs of arbitrary sizes and ex-
periment with various parameters that govern the structure
of the graph. The disadvantages are that users who follow
a topic are not necessarily random samples, and that so-
cial networks often have structural properties that are not
captured in generative models.

Real networks. We used publicly available data sets of
real social networks available at [21]. As for synthetic net-
works, we used a random sample of nodes to emulate users
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Figure 2: Comparison of the average degree of the core set
users and the average degree of their friends.

who follow a topic, which is the main disadvantage of this
approach. The advantage however, is that such datasets con-
tain an entire network which allows testing different propa-
gation parameters.

Facebook Pages. We collected data from several Face-
book Pages, each associated with a commercial entity that
uses the Facebook page to communicate with its followers.
For each page, we selected a post and then collected data
about the users who expressed interest (“liked”) the post
and their friends. The advantage of this data set is that it
is highly representative of the scenario we study here. Cam-
paigns run on a social network will primarily target users
who have already expressed interests in the topic being pro-
moted. The main disadvantage of this method is that such
data is extremely difficult to collect due to the crawling re-
strictions that Facebook applies and gives us only the 2-
hop neighborhood around a post. This makes it difficult
to experiment with different propagation parameters. For-
tunately, as we soon discuss, we were able to circumvent
some of the crawling restrictions and collect large networks,
and the properties of the voter influence model are such
that these datasets suffice to accurately account for influ-
ence propagation in the graph.

Data collection. We selected Facebook Pages in different
verticals (topics). Each page is operated by an institution
or an entity whose associated Facebook Page is regularly
used for promotional posts related to this topic. On each
of these pages, we selected a recent post (posted no later
than January 2014) with approximately 1,000 likes. The set
of users who liked those posts constitute our core set. We
then crawled the social network of these sets: for each user,
we collected her list of friends, and the degrees (number of
friends) of these friends.

Data description. Among the several verticals we col-
lected, we select eight of them for which we will report our
results. We obtained similar results for the other ones. Ta-
ble 1 summarizes statistics about the selected verticals. We
note that depending on the privacy settings of the core set
users, it was not always possible to access their list of friends.
We decided to remove these users since their ability to spread
information could not be readily determined. This effect,
combined with various errors encountered during the data
collection, accounts for an approximate 15% reduction be-
tween the users who liked a post and the number of users in
the datasets we used. Following our discussion in the intro-
duction, we observe that on average, the degrees of core set



Vertical Page m n

Charity Kiva 978 131334
Travel Lonely Planet 753 113250
Fashion GAP 996 115524
Events Coachella 826 102291
Politics Green Party 1044 83490
Technology Google Nexus 895 137995
News The New York Times 894 156222
Entertainment HBO 828 108699

Table 1: Dataset statistics. m: number of users in the core
set, n: number of friends of core set users.

users is much lower than the degrees of their friends. This
is highlighted on Figure 2 and justifies our approach.

5.2 Performance of Adaptive Seeding

For a given problem instance with a budget of k we applied
the adaptive seeding algorithm (the combinatorial version).
Recall from Section 2 that performance is defined as the
expected influence that the seeder can obtain by optimally
selecting users on the second stage, where influence is de-
fined as the sum of the degrees of the selected users. We
tested our algorithm against the following benchmarks:

e Random Node (RN): we randomly select k users from
the core set. This is a typical benchmark in comparing
influence maximization algorithms [14].

e Influence Maximization (IM): we apply the optimal in-
fluence maximization algorithm on the core set. This
is the naive application of influence maximization. For
the voter model, when the propagation time is polyno-
mially large in the network size, the optimal solution
is to simply take the k highest degree nodes [3]. We
study the case of bounded time horizons in Section 5.5.

e Random Friend (RF): we implement a naive two-stage
approach: randomly select k/2 nodes from the core
set, and for each node select a random neighbor (hence
spending the budget of k rewards overall). This method
was recently shown to outperform standard influence
maximization when the core set is random [18].

5.3 Performance on Facebook Pages

Figure 3 compares the performance of adaptive seeding,
our own approach, to the afore-mentioned approaches for all
the verticals we collected. In this first experiment we made
simplifying assumptions about the parameters of the model.
The first assumption is that all probabilities in the adaptive
seeding model are equal to one. This implicitly assumes
that every friend of a user who followed a certain topic is
interested in promoting the topic given a reward. Although
this is a strong assumption that we will revisit, we note that
the probabilities can be controlled to some extent by the so-
cial networking service on which the campaign is being run
by showing prominently the campaign material (sponsored
links, fund-raising banners, etc.). The second assumption is
that the measure of influence is the sum of the degrees of
the selected set. This measure is an appealing proxy as it
is known that in the voter model, after polynomially many
time steps, the influence of each node is proportional to its
degree with high probability [3]. Since the influence pro-
cess cannot be controlled by the designer, the assumption
is often that the influence process runs until it stabilizes (in
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Figure 4: Ratio of the performance of adaptive seeding to
IM. Bars represents the mean improvement across all verti-
cals, and the “error bar” represents the range of improvement
across verticals.

linear thresholds and independent cascades for example, the
process terminates after a linear number of steps [14]). We
perform a set of experiments for different time horizons in
Section 5.5.

It is striking to see how well adaptive seeding does in com-
parison to other methods. Even when using a small budget
(0.1 fraction of the core set, which in these cases is about 100
nodes), adaptive seeding improves influence by a factor of at
least 10, across all verticals. To confirm this, we plot the rel-
ative improvements of adaptive seeding over IM in aggregate
over the different pages. The results are shown in Figure 4.
This dramatic improvement is largely due to the friendship
paradox phenomenon that adaptive seeding leverages. Re-
turning to Figure 3, it is also interesting to note that the RF
heuristic significantly outperforms the standard IM bench-
mark. Using the same budget, the degree gain induced by
moving from the core set to its neighborhood is such that se-
lecting at random among the core set users’ friends already
does better than the best heuristic restricted only on the core
set. Using adaptive seeding to optimize the choice of core set
users based on their friends’ degrees then results in an order
of magnitude increase over RF, consistently for all the pages.

5.4 The Effect of the Probabilistic Model

The results presented in Section 5.2 were computed as-
suming the probabilities in the adaptive seeding model are
one. We now describe several experiments we performed
with the Facebook Pages data set that test the advantages
of adaptive seeding under different probability models.

Impact of the Bernouilli parameter. Figure 5a shows
the impact of the probability of nodes realizing in the sec-
ond stage. We computed the performance of adaptive seed-
ing when each friend of a seeded user in the core set joins
during the second stage independently with probability p,
using different values of p. We call p the Bernouilli param-
eter, since the event that a given user joins on the second
stage of adaptive seeding is governed by a Bernouilli variable
of parameter p. We see that even with p = 0.01, adaptive
seeding still outperforms IM. As p increases, the performance
of adaptive seeding quickly increases and reaches 80% of the
values of Figure 3 at p = 0.5.

Coarse estimation of probabilities. In practice, the
probability a user may be interested in promoting a cam-
paign her friend is promoting may vary. However, for those
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Figure 3: Performance of adaptive seeding compared to other influence maximization approaches. The horizontal axis represents the
budget used as a fraction of the size of the core set. The vertical axis is the expected influence reachable by optimally selecting nodes on

the second stage.
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Figure 5: (a) Performance of adaptive seeding for various prop-
agation probabilities. (b) Performance of adaptive seeding when
restricted to the subgraph of users who liked HBO (red line).

who have already expressed interest in the promoted con-
tent, we can expect this probability to be close to one. We
therefore conducted the following experiment. We chose a
page (HBO) and trimmed the social graph we collected by
only keeping on the second stage users who indicated this
page (HBO) in their list of interests. This is a coarse es-
timation of the probabilities as it assumes that if a friend
follows HBO she will be willing to promote with probabil-
ity 1 (given a reward), and otherwise the probability of her
promoting anything for HBO is 0. Figure 5b shows that
even on this very restricted set of users, adaptive seeding
still outperforms IM and reaches approximately 50% of the
unrestricted adaptive seeding.

Impact of the probability distribution. In order to test
scenarios where users have a rich spectrum of probabilities
of realizing on the second stage. We consider a setting where
the Bernouilli parameter p is drawn from a distribution. We
considered four different distributions; for each distribution

for fixed values of the budget and the parameter p, we tuned
the parameters of the distribution so that its mean is exactly
p. We then plotted the performance as a function of the
budget and mean p.

For the Beta distribution, we fixed f = 5 and tuned the «
parameter to obtain a mean of p, thus obtaining a unimodal
distribution. For the normal distribution, we chose a stan-
dard deviation of 0.01 to obtain a distribution more concen-
trated around its mean than the Beta distribution. Finally,
for the inverse degree distribution, we took the probability
of a node joining on the second stage to be proportional to
the inverse of its degree (scaled so that on average, nodes
join with probability p). The results are shown in Figure 6.

We observe that the results are comparable to the one we
obtained in the uniform case in Figure 5a except in the case
of the inverse degree distribution for which the performance
is roughly halved. Remember that the value of a user v on
the second stage of adaptive seeding is given by p,d, where
dy is its degree and p, is the its probability of realizing on the
second stage. Choosing p, to be proportional to 1/d, has
the effect of normalizing the nodes on the second stage and
is a strong perturbation of the original degree distribution
of the nodes available on the second stage.

5.5 Impact of the Influence Model

The Facebook Pages data set we collected is limited in
that we only have access to the 2-hop neighborhood around
the seed users and we use the degree of the second stage
users as a proxy for their influence. As proved in [3], in
the voter model, the influence of nodes converges to their
degree with high probability when the number of time steps
become polynomially large in the network size.

In order to analyze the expected number of nodes influ-
enced according to the voter model that terminates after
some fixed number of time steps, we use publicly available
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Figure 7: Performance of adaptive seeding compared to IM
for the voter influence model with ¢ steps.
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data sets from [21] where the entire network is at our dis-
posal. As discussed above, we sample nodes uniformly at
random to model the core set. We then run the voter model
for ¢ time steps to compute the influence of the second stage
users. Figure 7 shows the performance of adaptive seeding
as a function of ¢ compared to the performance of the IM
benchmark. In this experiment, the budget was set to half
the size of the core set.

We see that the performance of adaptive seeding quickly
converges (5 time steps for Slashdot, 15 time steps for Epin-
ions). In practice, the voter model converges much faster
than the theoretical guarantee of [8], which justifies using
the degree of the second stage users as measure of influence
as we did for the Facebook Pages data sets. Furthermore,
we see that similarly to the Facebook data sets, adaptive
seeding significantly outperforms IM.

5.6 Performance on Synthetic Networks

In order to analyze the impact of topological variations
we generated synthetic graphs using standard network mod-
els. All the generated graphs have 100, 000 vertices, for each
model, we tuned the generative parameters to obtain when
possible a degree distribution (or graph density otherwise)
similar to what we observed in the Facebook Pages data sets.

e Barabdsi-Albert: this well-known model is often used
to model social graphs because its degree distribution
is a power law. We took 10 initial vertices and added 10
vertices at each step, using the preferential attachment
model, until we reached 100,000 vertices.

e Small-World: also known as the Watts-Strogatz model.
This model was one of the first models proposed for

social networks. Its diameter and clustering coeffi-
cient are more representative of a social network than
what one would get with the Erdés—Rényi model. We
started from a regular lattice of degree 200 and rewired
each edge with probability 0.3.

e Kronecker: Kronecker graphs were more recently in-
troduced in [19] as a scalable and easy-to-fit model for
social networks. We started from a star graph with
4 vertices and computed Kronecker products until we
reached 100,000 nodes.

e Configuration model: The configuration model allows
us to construct a graph with a given degree distribu-
tion. We chose a page (GAP) and generated a graph
with the same degree distribution using the configura-
tion model.

The performance of adaptive seeding compared to our bench-
marks can be found in Figure 8. We note that the improve-
ment obtained by adaptive seeding is comparable to the one
we had on real data except for the Small-World model. This
is explained by the nature of the model: starting from a reg-
ular lattice, some edges are re-wired at random. This model
has similar properties to a random graph where the friend-
ship paradox does not hold [18]. Since adaptive seeding is
designed to leverage the friendship paradox, such graphs are
not amenable to this approach.

5.7 Scalability

To test the scalability of adaptive seeding we were guided
by two central questions. First, we were interested to wit-
ness the benefit our non-sampling approach has over the
standard SAA method. Secondly, we wanted to understand
when one should prefer to use the LP-based approach from
Section 4.1 over the combinatorial one from Section 4.2. The
computations in this section were run on Intel Core i5 CPU
4x2.40Ghz. For each computation, we plot the time and
number of CPU cycles it took.

Comparison with SAA. The objective function of the
non-adaptive problem (3) is an expectation over exponen-
tially many sets, all possible realizations of the neighbors in
the second stage. Following the sampling-based approach
introduced in [27], this expectation can be computed by av-
eraging the values obtained in O (nQ) independent sample
realizations of the second stage users (n is the number of
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the sampling-based algorithm and the combinatorial adap-
tive seeding algorithm for different sizes of the core set.

neighbors of core set users). One important aspect of the al-
gorithms introduced in this paper is that in the additive case,
this expectation can be computed exactly without sampling,
thus significantly improving the theoretical complexity.

In Figure 9, we compare the running time of our combina-
torial algorithm to the same algorithm where the expecta-
tion is computed via sampling. We note that this sampling-
based algorithm is still simpler than the algorithm intro-
duced in [27] for general influence models. However, we
observe a significant gap between its running time and the
one of the combinatorial algorithm. Since each sample takes
linear time to compute, this gap is in fact O(n®), quickly
leading to impracticable running times as the size of the
graph increases. This highlights the importance of the sans-
sampling approach underlying the algorithms we introduced.

Combinatorial vs. LP algorithm. We now compare the
running time of the LP-based approach and the combinato-
rial approach for different instance sizes.

Figure 10 shows the running time and number of CPU
cycles used by the LP algorithm and the combinatorial al-
gorithm as a function of the network size n. The varying
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Figure 10: Running time and number of CPU cycles of the
combinatorial algorithm and the LP algorithm as a function
of the number of nodes n. First row with budget £ = 100,
second row with budget £ = 500.

size of the network was obtained by randomly sampling a
varying fraction of core set users and then trimming the so-
cial graph by only keeping friends of this random sample on
the second stage. The LP solver used was CLP [1].

We observe that for a small value of the budget k (first
row of Figure 10), the combinatorial algorithm outperforms
the LP algorithm. When k becomes large (second row of
Figure 10), the LP algorithm becomes faster. This can be
explained by the k? factor in the running time of the com-
binatorial algorithm (see Proposition 5). Even though the
asymptotic guarantee of the combinatorial algorithm should
theoretically outperform the LP-based approach for large n,
we were not able to observe it for our instance sizes. In prac-
tice, one can choose which of the two algorithms to apply
depending on the relative sizes of k and n.

6. RELATED WORK

Influence maximization was introduced by Domingos and
Richardson [7, 25], formulated by Kempe, Kleinberg and
Tardos [14, 15], and has been extensively studied since [23,

, 20, 23, 5, 22, 4]. The main result in [14, 15] is a char-
acterization of influence processes as submodular functions,
which implies good approximation guarantees for the influ-
ence maximization problem. In [8], the authors look at the
special case of the voter model and design efficient algo-
rithms in this setting.

Our two-stage model for influence maximization is related
to the field of stochastic optimization where problems are
commonly solved using the sample average approximation
method [16]. Golovin and Krause [11] study a stochastic
sequential submodular maximization problem where at each
step an element is chosen, its realization is revealed and the
next decision is made. We note that contrary to adaptive
seeding, the decision made at a given stage does not affect
the following stages as the entire set of nodes is available as
potential seeds at every stage.
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APPENDIX
A. ADAPTIVITY PROOFS

PROOF OF PROPOSITION 1. We will first show that the
optimal adaptive policy can be interpreted as a non-adaptive
policy. Let S be the optimal adaptive solution and define
dr : N(X) — {0,1}:

Sn(u) = 1 ifucargmax{f(T); TC R, |T| <k—|S|}
r 0 otherwise ’

one can write

Y. pr max f(T)= > pr Y, On(uuw.

RCN(S) |T|<k—|S| RCN(S)  weN(X)
= > wu ) prir(w).
weN(X)  RCN(S)

Let us now define for u € N (X):
gu = 4 2nen(s) py0r(W) i pu#0
o otherwise

This allows us to write:
2, vn max f(I)= >, puguwn=F(poa)
RCN(S)  |T|<k—|S| uEN(X)

where the last equality is obtained from (4) by successively
using the linearity of the expectation and the linearity of f.


https://projects.coin-or.org/Clp
http://thibaut.horel.org/sas.pdf
http://snap.stanford.edu/data

Furthermore, observe that ¢, € [0,1], g = 0 if u & N(S)
and:

S|+ D> pugu=ISI+ > pr D> Or(w)

ueN (X) RCN(S) ueEN(X)
<IS|l+ Y pr(k—IS) <k
RCN(S)

Hence, (S,q) € Fna. In other words, we have written
the optimal adaptive solution as a relaxed non-adaptive so-
lution. This conclude the proof of the proposition. []

PROOF OF PROPOSITION 2. Using the definition of A(S),
one can write:

AS)= > pr max  f(T) > > prE[f(1)]

RCN(S) |T|<k—|S| RCN(S)

where the inequality comes from the fact that I is a feasible

random set: |I| < k — |S|, hence the expected value of f(I)

is bounded by the maximum of f over feasible sets.
Equation (5) then implies:

A(S)>(1-e) > prF(a)=(1-¢)F(poa). (11)
RCN(S)

Equation (11) holds for any ¢ > 0. In particular, for e
smaller than infsxr |A(S) — A(T)|, we obtain that A(S) >
F(poq). Note that such a ¢ is at most polynomially small
in the size of the instance. (S,q) is an a-approximate non
adaptive solution, hence F(poq) > aOPTxa. We can then
conclude by applying Proposition 1. [J

B. ALGORITHMS PROOFS

We first discuss the NP-hardness of the problem.
NP-Hardness. In contrast to standard influence maxi-
mization, adaptive seeding is already NP-Hard even for the
simplest cases. In the case when f(S) = |S| and all prob-
abilities equal one, the decision problem is whether given a
budget k and target value ¢ there exists a subset of X of size
k — t which yields a solution with expected value of ¢ using
t nodes in A (X). This is equivalent to deciding whether
there are k — t nodes in X that have ¢ neighbors in N (X).
To see this is NP-hard, consider reducing from SET-COVER
where there is one node i for each input set T;, 1 < ¢ < n,
with AV(¢) = T; and integers k, £, and the output is “yes” if
there is a family of k sets in the input which cover at least
¢ elements, and “no” otherwise.

B.1 LP-based approach

In the LP-based approach we rounded the solution using
the pipage rounding method. We discuss this with greater
detail here.

Pipage Rounding. The pipage rounding method [2] is
a deterministic rounding method that can be applied to
a variety of problems. In particular, it can be applied to
LP-relaxations of the MAX-K-COVER problem where we are
given a family of sets that cover elements of a universe and
the goal is to find k subsets whose union has the maximal
cardinality. The LP-relaxation is a fractional solution over
subsets, and the pipage rounding procedure then rounds the
allocation in linear time, and the integral solution is guar-
anteed to be within a factor of (1 — 1/e) of the fractional
solution. We make the following key observation: for any

given q, one can remove all elements in N (X) for which
gu = 0, without changing the value of any solution (X, q).
Our rounding procedure can therefore be described as fol-
lows: given a solution (X, q) we remove all nodes u € N'(X)
for which ¢, = 0, which leaves us with a fractional solu-
tion to a (weighted) version of the MAX-K-COVER problem
where nodes in X are the sets and the universe is the set
of weighted nodes in A (X) that were not removed. We can
therefore apply pipage rounding and lose only a factor of
(1 —1/e) in quality of the solution.

B.2 Combinatorial Algorithm

We include the missing proofs from the combinatorial al-

gorithm section. The scalability and implementation in MapRe-

duce are discussed in this section as well.

PrROOF OF LEMMA 2. W.l.o.g we can rename and order
the pairs in T" so that w1 > w2 > ... > wy,. Then, O(T,b)
has the following simple piecewise linear expression:

bw1 if0<b<mpm
i—1 i1

Zpk(wk —w;) +bw; f0<b— Zpk <pi
P k=1

—1
Zpkwk ifb> Zpk
k=1 i=1

Let us define for t € R*, n(t) = inf {z st S0 pe > t}

with n(t) = +o0o when the set is empty. In particular, note
that « +— n(t) is non-decreasing. Denoting 04+ Or the right
derivative of O(T,-), one can write 0y Or(t) = wy (), With
the convention that ws = 0.

O(T,b) =

Writing ¢ = sup {j s.t. w; > wz}, it is easy to see that
0+Oru{z) = 0+O7. Indeed:
1. if n(t) < ¢ then 8+OTU{I}(t) = 8+(9T(t) = Wn(t)-
2. if n(t) > i+ 1 and n(t — ¢) < i then 9y OrygL(t) =
Wy 2 wn(t) = 8+OT(t).
3. if n(t - C) >4+ 1, then 8+0TU{$} = Wn(t—c) = Wn(t) =
0+0r(t).
Let us now consider b and ¢ such that b < ¢. Then, using
the integral representation of O(T U {z},-) and O(T,-), we
get:

O(TU{z}, ) — O(T U {z},b) = /b 9, Oroor (1)t
zfﬁﬂ%mmzomg—oww
b

Re-ordering the terms, O(T U {z},¢) — O(T,c) > O(T U
{z},b)—O(T,b) which concludes the proof of the lemma. [

PROOF OF LEMMA 3. Let T C N(X) and z,y € N(X) \
T. Using the second-order characterization of submodular
functions, it suffices to show that:

O(T U {CL’}, b) - O(T7 b) > O(T U {yvm}v b) - O(T U {y}a b)

We distinguish two cases based on the relative position of
w, and wy. The following notations will be useful: ST =
{u €T st wy < wu} and Pf =T\ ST.

Case 1: If wy > w,, then one can write:

O(T' U{y,z},b) = O(Pp U {y},b1) + O(S7 U {z}, b2)
O(T U{y},b) = O(Pp U {y},b1) + O(ST, b2)



where by is the fraction of the budget b spent on P2 U {y}
and b2 = b — bl.

Similarly:

O(T'U {},b) = O(PY, e1) + O(S% U {a}, c2)
O(T7 b) = O(P’Zy"z 01) + O(S’élﬂ 02)
where ¢ is the fraction of the budget b spent on Py and
C2 = b— Ci.

Note that b1 > ¢1: an optimal solution will first spent as
much budget as possible on P%U{y} before adding elements
in S¥. U {z}.

In this case:

O(T U {z},b) — O(T,b) = O(S7 U{x}, c2) + O(S7, c2)

> O(SY U{x}, b2) + O(SY, ba)

= O(T U {y, .Z‘}, b) - O(T U {y}7 b)
where the inequality comes from Lemma 2 and c2 > bo.

Case 2: If w, > wy, we now decompose the solution on
P7 and S7:

O(T U {z},b) = O(Pr U {z},b1) + O(S7, b2)
O(T,b) = O(Pr,c1) + O(St, c2)
O(T U {y,{l?}, b) = O(P’; U {:]Z}, bl) + O(S’? ) {y}7 b2)
O(T U {y},b) = O(Pr,c1) + O(St U {y}, c2)
with b1 + b2 = b, ¢c1 +c2 = b and by < ca.
In this case again:

O(T U {z},b) — O(T,b) = O(S%,b2) — O(SF, c2)
> O(St U{y},b2) — O(ST U{y}, c2)
=O(T U{y,x},b) = O(T U{y},b)

where the inequality uses Lemma 2 and c2 > bs.

In both cases, we were able to obtain the second-order
characterization of submodularity. This concludes the proof
of the lemma. [

PRrROOF OF PROPOSITION 3. Let us consider S and T such
that S CT C X and z € X \ T. In particular, note that
N(S) CN(T).

Let us write N(SU{z}) = N(S)UR with N(S)NR =10
and similarly, N(TU{z}) = N(T)UR' with N(T)NR' = 0.
It is clear that R’ C R. Writing R’ = {u1,...,ux}:

O

—~

N(T U{z}),b) — ON(T), b)

[
E

(’)(N(T)U{ul, .. .ui},b)—O(N(T)U{uh. . .ui,1}7b)

1

7

E

O(N(S)U{ul, . .ui},b)—O(J\[(S)U{U17. . .ul;l},b)

i=1

= O(N(S) U R',b) — O(N(S),b)

where the inequality comes from the submodularity of O(-, b)
proved in Lemma 3. This same function is also obviously
set-increasing, hence:

O(N(S)UR',b) — O(N(S),b)
< OWN(S)UR,b) — O(N(S),b)
= OWN(SU{z}),b) — ON(S),b)

This concludes the proof of the proposition. [

PROOF OF PROPOSITION 4. We simply note that the con-
tent of the outer for loop on line 2 of Algorithm 1 is the
greedy submodular maximization algorithm of [24]. Since
O(N(+),t) is submodular (Proposition 3), this solves the in-
ner max in (10) with an approximation ratio of (1 — 1/e).
The outer for loop then computes the outer max of (10).

As a consequence, Algorithm 1 computes a (1 — 1/e)-
approximate non-adaptive solution. We conclude by apply-
ing Proposition 2. []

B.3 Parallelization

As discussed in the body of the paper, the algorithm can
be parallelized across k different machines, each one com-
puting an approximation for a fixed budget k —t in the first
stage and t in the second. A slightly more sophisticated
approach is to consider only logn splits: (1,k — 1), (2,k —
2),..., (21" 1) and then select the best solution from this
set. It is not hard to see that in comparison to the previous
approach, this would reduce the approximation guarantee
by a factor of at most 2: if the optimal solution is obtained
by spending ¢ on the first stage and k — t in the second
stage, then since t < 2 - 2llo8 ] the solution computed for
(2Uestl ' ollest]) will have at least half that value. More
generally, for any € > 0 one can parallelize over log, . n
machines at the cost of losing a factor of (1 + €) in the ap-
proximation guarantee.

B.4 Implementation in MapReduce

As noted in Section 4.2, lines 4 to 7 of Algorithm 1 corre-
spond to the greedy heuristic of [24] applied to the submod-
ular function f;(S) = O(N(S),t). A variant of this heuris-
tic, namely the e-greedy heuristic, combined with the SAM-
PLE& PRUNE method of [17] allows us to write a MapReduce
version of Algorithm 1. The resulting algorithm is described
in Algorithm 2

Algorithm 2 Combinatorial algorithm, MapReduce

1: S« 0
2: fort=1tok—1do
3 St +— 1]
4 for i =1 to log; . A do
5 U+ X,58 «0
6 while |U| > 0 do
7 R < sample from U w.p. min (1, ﬁ)
8 while |R| >0 or |S; U S’| < k do
9 T < some element from R
10 if Vfi(Seus, z)> ﬁ then
11 S+ S U{z}
12: end if
13: R < R\ {z}
14 end while
15 St — St us’
16 U<—{I€U|Vft(5t,l’)2ﬁ}
17 end while
18 end for
19: if ON(S:),t) > ON(S),k —|S]|) then
20: S St
21: end if
22: end for
23: return S

We denoted by V f:(S,z) the marginal increment of z to



the set S for the function f;, V fi(S,z) = fi(SU{z})— f:(5).
A is an upper bound on the marginal contribution of any
element. In our case, A = max,eca(x) W provides such an
upper bound. The sampling in line 7 selects a small enough
number of elements that the while loop from lines 8 to 14
can be executed on a single machine. Furthermore, lines
7 and 16 can be implemented in one round of MapReduce
each.

The approximation ratio of Algorithm 2 is 1 — % —e¢e. The
proof of this result as well as the optimal choice of ¢ follow
from Theorem 10 in [17].
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