Submodular Optimization Reading Group
Spring 2015
See the Hackpad for discussions.
Sessions
- Thu, Feb. 12 (Thibaut): greedy algorithms for monotone submodular maximization under cardinality, knapsack and matroid constraints. [14, 11, 15] [notes]
- Tue, Feb. 17 (Jean): pipage rounding. [1] [notes]
- Tue, Feb. 24 (Jean): extensions (multilinear, concave closure), Poisson clocks, maximizing sum of weighted rank functions under matroid constraint. [3] [notes]
- Wed, Feb. 25 (Eric): continuous greedy algorithm, maximizing monotone submodular function under matroid constraint, submodular welfare problem. [16, 4] [notes]
- Thu, Mar. 05 (Bo): contention resolution schemes, non-monotone submodular maximization over independent set systems. [17] [notes]
- Thu, Mar. 12 (Thibaut): combinatorial algorithm for coverage (and submodular) maximization over a matroid. [8, 9, 10]
- Thu, Mar. 26 (Jean): unconstrainted non-monotone submodular maximization, random set, local search. [6] [notes]
- Thu, Apr. 02 (Eric): randomized, linear-time optimal unconstrained non-monotone submodular maximization. [2] [notes]
- Thu, Apr. 09 (Thibaut): non-monotone submodular maximization under matroid and knapsack constraints. [12]
- Thu, Apr. 23 (Jean): computational hardness of approximating set cover. [5, 7]
- Thu, Apr. 30 (Bo): information theoretic lower bound for welfare maximization. [13]
References
-
A. A. Ageev and M. Sviridenko.
Pipage rounding: A new method of constructing algorithms with
proven performance guarantee.
J. Comb. Optim., 8(3):307–328, 2004.
[pdf]
-
N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz.
A tight linear time (1/2)-approximation for unconstrained submodular
maximization.
In 53rd Annual IEEE Symposium on Foundations of Computer
Science, (FOCS), pages 649–658, 2012.
[pdf]
-
G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák.
Maximizing a submodular set function subject to a matroid constraint.
In Integer programming and combinatorial optimization, pages
182–196. Springer, 2007.
[pdf]
-
G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák.
Maximizing a monotone submodular function subject to a matroid
constraint.
SIAM Journal on Computing, 40(6):1740–1766, 2011.
[pdf]
-
U. Feige.
A threshold of ln n for approximating set cover.
Journal of the ACM (JACM), 45(4):634–652, 1998.
[pdf]
-
U. Feige, V. S. Mirrokni, and J. Vondrák.
Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133–1153, 2011.
[pdf]
-
Y. Filmus.
Hardness of approximating set cover.
January 2011.
[pdf]
-
Y. Filmus and J. Ward.
Maximum coverage over a matroid.
In 29th Symposium on Theoretical Aspects of Computer Science
(STACS), 2012.
[pdf]
-
Y. Filmus and J. Ward.
A tight combinatorial algorithm for submodular maximization subject
to a matroid constraint.
In 53rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2012.
[pdf]
-
Y. Filmus and J. Ward.
Monotone submodular maximization over a matroid via non-oblivious
local search.
SIAM Journal on Computing, 43:514–542, 2014.
[pdf]
-
S. Khuller, A. Moss, and J. S. Naor.
The budgeted maximum coverage problem.
Information Processing Letters, 70(1):39–45, 1999.
[pdf]
-
J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko.
Non-monotone submodular maximization under matroid and knapsack
constraints.
In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, pages 323–332, 2009.
[pdf]
-
V. Mirrokni, M. Schapira, and J. Vondrák.
Tight information-theoretic lower bounds for welfare maximization in
combinatorial auctions.
In Proceedings of the 9th ACM conference on Electronic
commerce, pages 70–77. ACM, 2008.
[pdf]
-
G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher.
An analysis of approximations for maximizing submodular set
functions–i.
Mathematical Programming, 14(1):265–294, 1978.
[pdf]
-
M. Sviridenko.
A note on maximizing a submodular set function subject to a knapsack
constraint.
Operations Research Letters, 32(1):41–43, 2004.
[pdf]
-
J. Vondrák.
Optimal approximation for the submodular welfare problem in the value
oracle model.
In Proceedings of the fortieth annual ACM symposium on Theory of
computing, pages 67–74. ACM, 2008.
[pdf]
-
J. Vondrák, C. Chekuri, and R. Zenklusen.
Submodular function maximization via the multilinear relaxation and
contention resolution schemes.
In Proceedings of the forty-third annual ACM symposium on Theory
of computing, pages 783–792. ACM, 2011.
[pdf]
Last updated on Thu, Apr. 30 2015 at 10:53PM