
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer Lecture 15 — March 23rd

1 Overview

Throughout the course we developed an appreciation for the power of convex optimization. This
lecture discusses robustness to errors or equivalently optimization of approximately convex functions.

2 Convex Optimization under Error

Consider the problem of minimizing a convex function. In lecture 9 we introduced the gradient
descent algorithm and proved that by using approximately

κ =
log
(
f(x(0))−f(x?)

ε

)
log(1− m

M )

iterations we get a solution x s.t. |f(x)− f(x?)| ≤ ε where x? is the optimal solution. The problem
of convex optimization is therefore solvable in the sense that there are algorithms which make a
reasonable number (polynomially-many) of iterations and obtain an arbitrarily close solution to
optimal1. But suppose that instead of the true value of the function, we have access to some
erroneous version of it. Would it still be possible to optimize the function efficiently?

The value query model. The computational model we will consider is the value query model,
also known as zeroth order. In this model we are given an oracle to a function f : Rn → R we wish
to optimize s.t. an algorithm can query the oracle at any point x and the oracle returns the value
f(x). In particular, we are not given direct access to the gradient. One option is to approximate
the gradient to high degree of accuracy and run gradient descent (see problem set), but there are
also other algorithms like simulated annealing that are efficient and do rely on gradient evaluations.

Erroneous oracles. We can consider two types of erroneous oracles, as defined below.
1We must always rely on approximation as the optimal solution may be an irrational number.
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Definition. For a given function f : [0, 1]n → [0, 1] we say that:

• f̃ : [0, 1]n → [0, 1] is an absolute ε-erroneous oracle if ∀x ∈ [0, 1]n we have that:

f(x)− ε ≤ f̃(x) ≤ f(x) + ε;

• f̃ : [0, 1]n → R is a relative ε-erroneous oracle if ∀x ∈ [0, 1]n we have that:

(1− ε)f(x) ≤ f̃(x) ≤ (1 + ε)f(x).

Note that we intentionally do not make distributional assumptions about the errors. This is in
contrast to noise, where the errors are assumed to be random and independently generated from
some distribution. In such cases, under reasonable conditions on the distribution, one can obtain
arbitrarily good approximations of the true function value by averaging polynomially many points in
some ε-ball around the point of interest. While distributional i.i.d. assumptions are often reasonable
models, it is a strong assumption. From a practical perspective, there are cases in which noise can
be correlated, or where the data we use to estimate the function is corrupted in some arbitrary way.
Furthermore, since we often optimize over functions that we learn from data, the process of fitting
a model to a function may also introduce some bias that does not necessarily vanish, or vanishes at
some slow rate. But more generally, it seems like we should morally know the consequences that
modest inaccuracies may have, or alternatively the limitation of approximately convex optimization.

Approximately convex functions. Notice that an absolute erroneous oracle is an approximately
convex function. That is, an ε-erroneous oracle respects an approximate version of convexity in that
for every x,y ∈ [0, 1]n we have that:

f̃(λx + (1− λ)y) ≤ f(λx + (1− λ)y) + ε

≤ λf(x) + (1− λ)f(y) + ε

≤ λ
(
f̃(x) + ε

)
+ (1− λ)

(
f̃(y) + ε

)
+ ε

= λf̃(x) + (1− λ)f̃(y) + 3ε

So, in this model, instead of seeking to optimize a convex function, we seek to optimize a function
that is only 3ε away from being convex. If ε > 0 is small (e.g. ε converges to zero as n grows large),
can we design algorithms that approximately minimize the convex function?

Approximation algorithms The quality of an algorithm is typically measured through two pa-
rameters: running time and approximation ratio. We seek algorithms whose running time is poly-
nomial in n and the desired degree of accuracy, and at the same time obtain a good approximation
ratio (i.e. have good accuracy).
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Definition. For a minimization problem, given a nonnegative objective function f and a polytope
P we will say that:

• An algorithm provides a multiplicative α-approximation (α > 1) if it finds a point x̄ ∈ P
s.t. f(x̄) ≤ αminx∈P f(x). For a maximization problem, an algorithm provides an α-
approximation (α < 1) if it finds a point x̄ s.t. f(x̄) ≥ αmaxx∈P f(x).

• For absolute erroneous oracles, given an objective function f and a polytope P we will aim
to find a point x̄ ∈ P which is within an additive error of δ from the optimum, with δ as
small as possible. That is, for a δ > 0 we aim to find a point x̄ s.t. |f(x̄)−minx f(x)| < δ
in the case of minimization.

Benign cases. In the special case of a linear function f(x) = cᵀx, for some c ∈ Rn, a relative
ε-error has little effect on the optimization. By querying f(ei), for every i ∈ [n] we can extract
c̃i ∈ [(1− ε)ci, (1 + ε)ci] and then optimize over f ′(x) = c̃ᵀx. This results in a (1± ε)-multiplicative
approximation. Alternatively, if the erroneous oracle f̃ happens to be a convex function, optimizing
f̃(x) directly retains desirable optimization guarantees, up to either additive and multiplicative
errors. We are therefore interested in scenarios where the error does not necessarily have nice
properties.

Example: Gradient descent fails with error. For a simple example, consider the function
illustrated in Figure 1. The figure illustrates a convex function (depicted in blue) and an erroneous
version of it (dotted red), s.t. on every point, the oracle is at most some additive ε > 0 away from
the true function value (the ε margins of the function are depicted in grey). If we assume that a
gradient descent algorithm is given access to the erroneous version (dotted red) instead of the true
function (blue), the algorithm will be trapped in a local minimum that can be arbitrarily far from
the true minimum. But the fact that a naive gradient descent algorithm fails does not necessarily
mean that there isn’t an algorithm that can overcome small errors. This narrates the main question
in this paper.

Is convex optimization robust to error?

The main result in this lecture is a spoiler. We will show stark information-theoretic lower bounds
for both relative and absolute ε-erroneous oracles, for any constant and even sub-constant ε > 0. To
do so, we will use a probabilistic construction. We first give a review of basic facts from probability
theory, and then prove the impossibility result.

3 Probability Review

Probabilistic constructions. A probabilistic construction is general term for cases in which
instead of giving an explicit example we use describe a distribution over examples. In our case we
wish to show an impossibility result for convex optimization under error. More specifically, we want
to show that for any algorithm, there exists an instance (a function) s.t. given an erroneous oracle,
the algorithm will need to make a large (exponential) number of queries to obtain some reasonable
guarantee. To show this, instead of explicitly giving a “bad” function for every algorithm, we will

3



x

f(x)

Figure 1: An illustration of an erroneous oracle to a convex function that fools a gradient descent algorithm.

describe a distribution over functions and use this to argue that there exists a function that is “bad”
for every algorithm. This statement is a bit abstract at this stage, but in the next section we will
see exactly how to use this principle in a meaningful way.

Union bound. Recall that the union bound says that for any finite or countable set of events, the
probability that at least one of the events happens is no greater than the sum of the probabilities
of the individual events. Formally, for a countable set of events A1, A2, A3 we have that:

P[∪iAi] ≤
∑
i

P[Ai]

Chernoff bounds. An important tool we will use is the Chernoff bounds. We note that while typ-
ically stated for independent random variables X1, . . . , Xm, Chernoff bounds also hold for negatively
associated random variables.

Definition. Random variables X1, . . . , Xn are negatively associated, if for every I ⊆ [n] and
every non-decreasing f : RI → R, g : RĪ → R,

E[f(Xi, i ∈ I)g(Xj , j ∈ Ī)] ≤ E[f(Xi, i ∈ I)]E[g(Xj , j ∈ Ī)].

Claim 1. Let X1, . . . , Xn be negatively associated random variables that take values in [0, 1] and
µ = E[

∑n
i=1Xi]. Then, for any δ ∈ [0, 1] we have that:

P[
n∑
i=1

Xi > (1 + δ)µ] ≤ e−δ2µ/3,

P[
n∑
i=1

Xi < (1− δ)µ] ≤ e−δ2µ/2.
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We apply this to random variables that are formed by selecting a random subset of a fixed size. In
particular, we use the following.

Claim 2. Let x1, . . . , xn ≥ 0 be fixed. For 1 ≤ k ≤ n, let R be a uniformly random subset of k
elements out of [n]. Let Xi = xi if i ∈ R and Xi = 0 otherwise. Then X1, . . . , Xn are negatively
associated.

4 An Impossibility Result for Convex Optimization under Error

We will consider convex minimization over [0, 1]n so that we can calibrate the error level ε. In this
setting, we show that errors as small as n−(1−δ)/2 prevent us from optimizing within a constant
additive error of nearly 1/2. Notice that a dummy algorithm that regardless of the function being
optimized always returns 1/2 will always be ±1/2 from optimal.

Theorem 3. Let δ > 0 be a constant. There are instances of a convex function f : [0, 1]n →
[0, 1] accessible through an absolute n−(1−δ)/2-erroneous oracle, such that a (possibly randomized)
algorithm that makes eO(nδ) queries cannot find a solution of value better than within additive 1/2−
o(1) of the optimum with probability more than e−Ω(nδ).

Proof. Let ε = n−(1−δ)/2; we can assume that ε < 1
2 , otherwise n is constant and the statement is

trivial. We will construct an ε-erroneous oracle (both in the relative and absolute sense) for a convex
function f : [0, 1]n → [0, 1]. Consider a partition of [n] into two subsets A,B of size |A| = |B| = n/2
(which will be eventually chosen randomly). We define the following function:

• f(x) = 1
2 + 1

n(
∑

i∈A xi −
∑

j∈B xj).

This is a convex (in fact linear) function. Next, we define the following modification of f , which
could be the function returned by an ε-erroneous oracle.

• If |
∑

i∈A xi −
∑

j∈B xj | >
1
2εn, then f̃(x) = f(x) = 1

2 + 1
n(
∑

i∈A xi −
∑

j∈B xj).

• If |
∑

i∈A xi −
∑

j∈B xj | ≤
1
2εn, then f̃(x) = 1

2 .

Note that f(x) and f̃(x) differ only in the region where |
∑

i∈A xi−
∑

j∈B xj | ≤
1
2εn. In particular,

the value of f(x) in this region is within [1−ε
2 , 1+ε

2 ], while f̃(x) = 1
2 , so an ε-erroneous oracle for

f(x) (both in the relative and absolute sense) could very well return f̃(x) instead.

Now assume that (A,B) is a random partition, unknown to the algorithm. We argue that with
high probability, a fixed query x issued by the algorithm will have the property that |

∑
i∈A xi −∑

j∈B xj | ≤
1
2εn. More precisely, since (A,B) is chosen at random subject to |A| = |B| = n/2, we

have that
∑

i∈A xi is a sum of negatively associated random variables in [0, 1] (by Claim 2). The
expectation of this quantity is µ = E[

∑
i∈A xi] = 1

2

∑n
i=1 xi ≤

1
2n. By Claim 1, we have

P[
∑
i∈A

xi > µ+
1

4
εn] = P[

∑
i∈A

xi > (1 +
n

4µ
ε)µ] < e−(nε/(4µ))2µ/3 ≤ e−ε2n/24.
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Since 1
2

∑
i∈A xi + 1

2

∑
i∈B xi = 1

2

∑n
i=1 xi = µ, we get

P[
∑
i∈A

xi −
∑
i∈B

xi >
1

2
εn] = P[

∑
i∈A

xi − µ >
1

4
εn] < e−ε

2n/24.

By symmetry,

P[|
∑
i∈B

xi −
∑
j∈A

xj | >
1

2
εn] < 2e−ε

2n/24.

We emphasize that this holds for a fixed query x.

Recall that we assumed the algorithm to be deterministic. Hence, as long as its queries satisfy the
property above, the answers will be f̃(x) = 1/2, and the algorithm will follow the same path of
computation, no matter what the choice of (A,B) is. (Effectively we will not learn anything about
A and B.) Considering the sequence of queries on this computation path, if the number of queries
is t then with probability at least 1 − 2te−ε

2n/24 the queries will indeed fall in the region where
f̃(x) = 1/2 and the algorithm will follow this path. If t ≤ eε

2n/48, this happens with probability
at least 1− 2e−ε

2n/48. In this case, all the points queried by the algorithm as well as the returned
solution xout (by the same argument) satisfies f̃(xout) = 1/2, and hence f(xout) ≥ 1−ε

2 . In contrast,
the actual optimum is f(1B) = 0. Recall that ε = n−(1−δ)/2; hence, f(xout) ≥ 1

2(1 − n−(1−δ)/2)
and the bounds on the number of queries and probability of success are as in the statement of the
theorem.

Finally, consider a randomized algorithm. Denote by (R1, R2, . . . , ...) the random variables used
by the algorithm in its decisions. We can condition on a fixed choice of (R1 = r1, R2 = r2, . . .)
which makes the algorithm deterministic. By our proof, the algorithm conditioned on this choice
cannot succeed with probability more than e−Ω(nδ). Since this is true for each particular choice of
(r1, r2, . . .), by averaging it is also true for a random choice of (R1, R2, . . .). Hence, we obtain the
same result for randomized algorithms as well.

5 Discussion and Further Reading

This lecture is based on a recent paper [1]. In addition to the result we presented here, one can
show similar lower bounds for for maximizing a concave function f : [0, 1]n → [0, 1] over a polytope,
maximizing a concave function f : [0, 1]n → [0, 1] over [0, 1]n, and maximizing a concave function
over a partition polytope.
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