
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer Lecture 21 — April 13th

1 Overview

In the lecture we introduce a different approach for designing approximation algorithms. So far,
we introduced combinatorial optimization problems, and solved the problems via combinatorial
algorithms. We phrased the problems as mathematical and integer programs, but did not use these
formulations directly. In this lecture we will give examples of approximation algorithms that rely
on rounding solutions to linear programs. As we’ve seen before, the integer programming problems
we have seen can be relaxed to a linear program. The problem however is that a linear program
produces fractional solutions where variables can take on values in [0, 1] and not in {0, 1}. In this
lecture we will show how to take a solution of a linear program and round it in a meaningful way.
To do so we discuss the set cover problem, which is the dual problem of the max-cover problem we
studied in previous lectures.

2 The Set Cover Problem

The minimum set cover problem can be formalized as follows. We are given sets T1, . . . , Tm that
cover some universe with n elements, and the goal is to find a family of sets with minimal cardinality
whose union covers all the elements in the universe. We assume that the number of sets m and the
number of elements in the universe n are polynomially related, i.e. m ≈ nc, for some constant c > 0.
We will express the approximation ratio in terms of n (the number of elements in the universe), but
the results are asymptotically equivalent to in terms of m. 1

2.1 The greedy algorithm for set cover

Notice that the decision version of the min-set cover is exactly the decision version of max-cover:
given a family of sets T1, . . . , Tm is there a family of sets of size k that covers at least d elements
in the universe? We know that this decision problem is NP-complete, and hence min-set cover
is an NP-hard optimization problem. Our goal will therefore be to design a good approximation
algorithm for this problem. A natural candidate is the greedy algorithm presented in Algorithm 1,
which is a straightforward adaptation of the greedy algorithm for max-cover.

Theorem 1. The greedy algorithm is a Θ(log n) approximation.
1In the max cover problem we used n to denote the number of sets, and the results we expressed were independent

of the size of the universe. For convenience, we used n here to denote the number of elements in the universe since
our analysis will be in terms of the elements and not the sets that cover them, but as discussed above this choice is
insignificant for the results we will show.

1

Algorithm 1 Greedy algorithm for Min Set Cover
1: S ← ∅
2: while not all elements in the universe are covered do
3: T set that covers the most elements that are not yet covered by S
4: S ← S ∪ {T}
5: end while
6: return S

Proof. First, observe that the algorithm terminates after at most m stages. Since there are m sets
and in each iteration of the while loop we add a set to the solution, we will terminate after at most
m steps.

Let uj denote the number of elements in the universe that are still not covered at iteration j of
the while loop, and let k denote the number of sets in the optimal solution, i.e. k = OPT. In each
iteration j we can use all the k sets in the optimal solution to cover the entire universe, and in
particular to cover uj . Therefore, there must exist at least one set in the optimal solution that
covers at least uj/k elements. Since we select the set whose marginal contribution is largest at each
iteration, this implies that in every iteration we include at least uj/k elements into the solution.
Put differently, we know that after iteration j we are left with at most uj −uj/k elements. That is:

uj+1 ≤
(
uj −

uj
k

)
≤
(

1− 1

k

)
uj ≤

(
1− 1

k

)(
1− 1

k

)
uj−1 ≤ . . . ≤

(
1− 1

k

)j+1

u0 =

(
1− 1

k

)j+1

n

where the last equality is due to the fact that u0 = n since there are exactly n elements in the
universe before the first iteration. Notice also that once we get to stage i for which ui ≤ 1 we’re
done, since this implies that we need to select at most one more set and obtain a set cover. So
the question is how large does i need to be to guarantee that ui ≤ 1? A simple bound shows that
whenever i ≥ k · lnn we have that ui ≤ 1:

(
1− 1

k

)i

=

((
1− 1

k

)k
) i

k

≤ e−
i
k

we can approximate the number of iterations as if the size is reduced by a factor of 1/e:

n · e−
i
k ≤ 1 ⇐⇒ e−

i
k ≤ n−1 ⇐⇒ −i/k ≤ − lnn ⇐⇒ i ≥ k lnn

and we therefore have that after i = k · lnn steps the remaining number of elements ui is smaller
or equal to 1. Thus, after at most k · lnn + 1 = OPT lnn + 1 iterations the algorithm will terminate
with a set cover whose size is at most k · lnn+ 1 = OPT lnn+ 1 ∈ Θ(lnn · OPT) = Θ(log n · OPT).

Until this point we have been fortunate to find constant-factor approximation algorithms, which
makes the log n approximation factor seem somewhat disappointing. It turns out however that
improving over the log n approximation ratio is impossible in polynomial time unless P=NP[1]. We
can look at the glass as half-full: we have an optimal (unless P=NP) approximation algorithm.

A note about modeling. Notice the stark difference between the guarantees obtainable for min-
set cover and max-cover. In one we cannot hope to do better than Θ(log n) where as in the other we

2

can obtain an approximation ratio of 1−1/e ≈ 63% of the optimal solution. In some cases, we really
want to solve a min-set cover problem and the Θ(log n) is unavoidable. However, there are many
cases where we have the freedom to choose the models we work with. In this case, the choice to
cover as many elements in the universe as possible under some budget as opposed to covering all the
elements under a minimal cost is the difference between desirable and not-so-desirable guarantees.

3 An LP-based Approach

We will now introduce a different approach for designing approximation algorithms. This approach
involves solving a linear program which is a relaxation of the integer program that defines the
problem as a first step. Then, it uses various methods to take a fractional solution of the linear
program and interpret it as an integral solution.

Min set cover as a mathematical program. For the min-set cover problem, we can associate
a variable xi with each set Ti, and formulate the problem as the following integer program:

min

m∑
i=1

xi (1)

s.t.
∑
i:j∈Ti

xi ≥ 1 ∀j ∈ [n] (2)

xi ∈ {0, 1} ∀i ∈ [m] (3)

We know that the problem is NP-hard (and following the above discussion that its solution cannot
be approximated within a factor better than log n unless P=NP), and therefore we do not know
how to solve the above integer program in polynomial-time. However, if we relax condition (3) to:

xi ∈ [0, 1] ∀i ∈ [m]

we have a linear program which we can solve in polynomial time. One key observation is that
the optimal integral solution OPT is always an upper bound on the fractional solution OPTLP . This
is simply due to the fact that the optimal integral solution is a feasible solution to the LP, and
therefore since we can solve the LP optimally, its solution has to be at least as good as that of the
optimal integral solution.

An approximation algorithm through randomized rounding. The first LP-based algorithm
we will introduce uses a technique called randomized rounding. This techniques naturally interprets
the fractional solution of the linear program as a probability distribution on its variables, and then
selects a solution using the probability distribution. For this problem let d be a constant that
satisfies the following condition:

e−d logn ≤ 1

4n

This choice may seem a bit mystical now, but it’ll become clear as we analyze the algorithm below.

Theorem 2. The randomized rounding algorithm returns a set S which is a set cover and a Θ(log n)
approximation to OPT, with probability at least 1/2.

3

Algorithm 2 Randomized-rounding algorithm
1: S ← ∅

p← Solution to LP
2: while i ≤ d log n do
3: S(i) ← select every set i ∈ [m] with probability pi
4: S ← S ∪ S(i)

5: end while
6: return S

Proof. Consider an element a in the universe, and w.l.o.g. assume that this element is covered by
the k sets T1, . . . , Tk. We will first analyze the probability that this element a is covered by the set
S returned by the algorithm.

P
[
a is not covered by S(i)

]
≤

k∏
j=1

(1− pj) ≤
(

1− 1

k

)k

≤ 1

e

The above inequality
∏k

j=1(1 − pj) ≤
(
1− 1

k

)k is due to the fact that for any x1, . . . , xk ∈ R the

function h(x) =
∏k

j=1

(
1− xi∑

i∈[k] xi

)
achieves its maximum when x1 = x2 = . . . = xk =

∑
i∈[k] xi/k.

Therefore:

P
[
a is not covered by S = ∪d logni=1 S(i)

]
= P

[
a not covered by S(1)

]
· P
[
a not covered by S(2)

]
· · ·P

[
a not covered by S(d logn)

]
≤
(

1

e

)d logn

≤ 1

4n

We can now bound the probability that S is not a set cover by a union bound:

P [S is not a set cover] ≤
n∑

j=1

P [aj is not covered by S] ≤ n · 1

4n
≤ 1

4

We therefore have that that with probability at least 1/4 the solution S is a set cover. This is the
first step. We now need to argue about the quality of the set cover, that is, the approximation ratio.

4

We will first bound the expected number of sets that are in S:

E [|S|] = E

[
d logn∑
i=1

|S(i)|

]

=

d logn∑
i=1

E
[
|S(i)|

]

=

d logn∑
i=1

m∑
i=1

pi

=

d logn∑
i=1

OPTLP

= d log n · OPTLP
≤ d log n · OPT

We therefore have the expected number of sets selected is at most d log n · OPT, which tells us that
in expectation we have a d log n approximation. To strengthen this guarantee we can ask what is
the probability that we will have more than |S| ≥ 4 · d log n? Recall Markov’s inequality:

Markov’s inequality: Let X be a non-negative random variable and t ≥ 0. Then:

P[X ≥ t] ≤ E[X]

t

Using Markov’s inequality we get:

P [|S| ≥ 4d log nOPT] ≤ E [|S|]
4d log nOPT

=
1

4
(4)

We therefore get that with probability at least 3/4 the size of the solution is at most 4d log nOPT,
or in other words, with probability 3/4 we have a 4d log n approximation. Since d is constant, this
is a Θ(log n) approximation.

Now notice that with probability at most 1
4 + 1

4 we either don’t have a set cover or the number of
sets exceeds 4d log n. Therefore with probability at least 1/2 we have that S is a set cover (it covers
all the elements in the universe) and |S| ≤ 4d log n, i.e. we have a Θ(log n) approximation.

Notice that the guarantee we have from the randomized rounding algorithm is quite strong. After
the algorithm terminates we can check whether it returns a set cover, and also whether the total
cost exceeds 4d log nOPTLP (we can do that since we have the solution of the LP). Thus, if the
algorithm failed, we can run it again and hope that it succeeds. In expectation, we will need to run
the algorithm twice after which we will have a set cover whose cost is at most 4d log n · OPTLP .

3.1 A rounding algorithm for small frequencies

The minimum set cover problem is a generalization of a simpler problem we studied. Recall the
vertex cover problem (problem set 9) where we have an undirected graph, and wish to find the fewest

5

nodes that cover all the edges in the graph. We can model this as a minimum set cover problem
by associating each vertex vi with a set Ti and each edge ej becomes an element aj in the universe
that we aim to cover. While this is an instance of the minimum set cover problem, it is an easier
one. In particular, the frequency of elements in sets is bounded.

Definition. For a given instance of set cover we say that an element j ∈ [n] appears with
frequency cj if it is covered by at most cj sets. The frequency of the instance is c =
maxj∈[n] cj .

In general, the frequency of the instance can be as large as m which is the number of sets. In some
cases however, it is very reasonable to assume that we have instances with bounded frequencies. In
the vertex cover problem, for example, the frequency is 2 since each edge can belong to at most two
vertices. We have already seen in the problem set (or at least in the solution) that one can achieve
an approximation ratio of 2 for this problem, which is far better than the O(log n) we have for the
general minimum set cover case. Can we generally obtain better guarantees when the frequency is
bounded? The following algorithm gives an approximation ratio that depends on c.

Algorithm 3 Rounding algorithm
1: S ← ∅
2: p← Solution to LP
3: S ← all sets i ∈ [m] for which pj ≥ 1/c
4: return S

Theorem 3. For any instance of the minimum set cover problem whose frequency is c, the rounding
algorithm above returns a solution which is a c-approximation to OPT.

Proof. Let a be an element in the universe, which, w.l.o.g. is covered by sets T1, . . . , Tk, the
requirement of the LP is that the corresponding variables p1, . . . , pk respect: p1 + . . . + pk ≥ 1.
Therefore, there must be at least one variable pi s.t. pi ≥ 1/k. Since the instance frequency is c we
know that k ≤ c and therefore pi ≥ 1/k ≥ 1/c. By the condition of the algorithm this implies that
we selected at least one set that covers a. Since this holds for all elements in the universe we have
a set cover.

Regarding the approximation ratio, consider the cost of the LP:
∑m

i=1 pi, and let the I denote the
set of indices for which pi ≥ 1/c, notice that the solution that we selected has cost

∑
i∈I c · pi since

we turned each set whose cost was greater or equal to 1/c to 1. Thus:

|S| =
∑
i∈I

c · pi = c ·
∑
i∈I

pi ≤ c ·
m∑
i=1

pi = c · OPTLP ≤ c · OPT.

4 Discussion and Further Reading

Rounding linear and convex programs is power technique for designing approximation algorithms.
In this course, we will soon explore other rounding methods, and see how we can design approxi-
mation algorithms and by using more involved rounding techniques. To read more about rounding
techniques please see [2] and [3].

6

References

[1] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4).

[2] Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

[3] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cam-
bridge University Press, 2011.

7

	Overview
	The Set Cover Problem
	The greedy algorithm for set cover

	An LP-based Approach
	A rounding algorithm for small frequencies

	Discussion and Further Reading

