
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer Lecture 4 — February 3rd

1 Overview

In the previous lecture we introduced linear optimization, and saw a few examples showing the
modeling power of linear optimization. Our goals for understanding optimization problems and
linear optimization in particular can be summarized through the following questions:

1. When is an LP feasible / infeasible?

2. When is an LP bounded / unbounded?

3. What is a characterization of optimality?

4. How do we design algorithms that find optimal solutions to (bounded and feasible) LPs (and
optimization problems in general)?

In this lecture we’ll introduce duality theory which is a beautiful and fundamental building block
in optimization. To do so, we will first prove Farkas lemma which tells us that if a linear program
is not feasible there exists a certificate showing this. As we discuss duality we will see that Farkas
lemma can also be used to tell us when an LP is bounded or unbounded. Duality is in fact a
characterization of optimality and we will use it to develop algorithms for finding optimal solutions
of linear programs. Let’s start.

2 Farkas Lemma: Certificate of Feasibility

As a first step, we would like to understand when an LP is feasible. That is, when is the set of
constraints non-empty. The answer to this question was answered by Gauss somewhere around
1800 for the case in which the constraints of the LP can be represented by equalities (i.e. Ax = b).
Note that an equivalent question to whether a region is feasible or not, is whether a system of linear
equations has a solution. That is, we can encode the constrains as a matrix A and vector b and
solve Ax = b by Gaussian elimination.

Example. Consider the following linear program:

max x1 + x2 + x3

s.t. x1 + x2 + x3 = 6

2x1 + 3x2 + x3 = 8

2x1 + x2 + 3x3 = 0
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Does the above LP have a feasible region? Multiplying the first, second, and third row by 4, −1,
−1 respectively, and then adding the equations we get that 0x1 + 0x2 + 0x3 = 16. Therefore we
conclude that the feasible region is empty, and the LP is infeasible. The certificate of infeasibility
is (4,−1,−1). For a program with a feasible region, a certificate of feasibility on the other hand, is
any point in the feasible region. That is, a solution to the system of equations.

We can write the set of constraints as the matrix A and vector b below:

A =

1 1 1
2 3 1
2 1 3

 ,b =

6
8
0

 (1)

Stated in these terms, we are interested in knowing whether there exists an x ∈ R3 s.t. Ax = b. By
performing raw operations on the matrix (Gaussian elimination), we saw that there exists a vector
y = (4,−1,−1) s.t. yᵀAx = 0 and yᵀb = 16 6= 0. The vector y is a certificate of infeasibility. We
know this procedure as the fundamental theorem in linear algebra.

Theorem. [Gauss] Let A be a m × n matrix, and let b ∈ Rm vector. Then exactly one of the
following statements hold, but not both:

(I) ∃x ∈ Rn : Ax = b or

(II) ∃y ∈ Rm s.t. yᵀA = 0 and yᵀb 6= 0.

So whenever the constraints can be encoded as Ax = b, we can use the Gaussian elimination process
to tell us whether an LP is feasible; if it is not feasible we are able to easily produce the certificate
y which tells us that no solutions that satisfy the constraints exist. In general, we would like to be
able to perform such tests for the inequality Ax ≤ b. This is Farkas Lemma1.

Theorem 1 (Farkas). Let A be a m × n matrix, and b ∈ Rm. Then exactly one of the following
statements hold, but not both:

(I) ∃x ∈ Rn : Ax = b, x ≥ 0 or

(II) ∃y ∈ Rm s.t. yᵀA ≤ 0 and yᵀb > 0.

Proof. We will first show that if (I) is true then (II) is necessarily false. Assume Ax = b for some
x ≥ 0. If yᵀA ≤ 0 then for x ≥ 0 we have that yᵀAx ≤ 0. Since Ax = b this implies that yᵀb ≤ 0,
and thus it cannot be that both yᵀAx ≤ 0 and yᵀb > 0.

Now we’ll prove that if (I) is false then (II) is necessarily true. Define:

C = {q ∈ Rm : ∃x ≥ 0 Ax = q};

Notice that C is a convex set: for q1,q2 ∈ C there exist x1,x2 s.t q1 = Ax1 and q2 = Aq2, and
for any λ ∈ [0, 1] we have that λq2 + (1 − λ)q2 = λAq1 + (1 − λ)Aq2 = A(λq1 + (1 − λ)q2) and
hence λq2 + (1− λ)q2 ∈ C. Since (I) is false b /∈ C. From the separating hyperplane theorem, we
know there exists y ∈ Rm \ 0 s.t. yᵀq ≤ 0 and yᵀb > 0, for all q ∈ C. Since q = Ax that implies
that ∀x ≥ 0 we have that yᵀAx ≤ 0 and yᵀb > 0, as required.

1The result is known as Farkas Lemma, but we write it here as a theorem.
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As we will soon see, we also have a constructive manner to find this vector y which serves as an
infeasibility certificate in cases where the set is indeed infeasible.

3 Duality Theory

Consider the following optimization problem:

min x1 + 2x2 + 4x3

s.t. x1 + x2 + 2x3 = 5

2x1 + x2 + 3x3 = 8

x1, x2, x3 ≥ 0

Our main goal is to understand how to solve linear optimization problems like the one above. That
is, we seek to find an optimal solution x ∈ Rn for which the above program in minimal and respects
the constraints. To do so we can try to find upper and lower bound on the optimal solution:

lower bound ≤ optimal solution ≤ upper bound

The primal-dual method which we now introduce seeks to find the smallest upper bound and the
largest lower bound and in doing so produce an optimal solution.

Finding upper bounds on optimal solution. For the optimization problem, we can try to
guess solutions, and evaluate their quality. For example, the solution (2, 1, 1), i.e. x1 = 2, x2 =
1, x3 = 1 respects the constraints of the program above, and its value is 1 · 2 + 2 · 1 + 4 · 1 = 8.
So, α1 = 8 is an upper bound on the optimal solution – since x1 = (2, 1, 1) is feasible, and its value
is 8, we know that the optimal solution is at most 8. Similarly, we can try (3, 2, 0), see that it
also respects the constraints, and the value of this solution would be α2 = 1 · 3 + 2 · 2 + 4 · 0 = 7.
Therefore, α2 = 7 is also a lower bound on the optimal solution.

At this point it is not clear how to “guess” candidates for an upper bound, but assuming someone
gives us a point, we can easily check whether that point is feasible, and if it is, we know its value
is an upper bound on the optimal solution. So what about lower bounds?

Finding lower bounds on optimal solution. Let’s consider the performing the following
operation on our constraint matrix A and b: multiply the first row by 2 and subtract the second
row from the first row. Or in other words, (2,−1)ᵀA and (2,−1)ᵀb. This operation gives us the
following equation:

0 · x1 + 1 · x2 + 1 · x3 = 2

If we look closely at the above equation we see that all multipliers of x1, x2, x3 are not greater than
the multipliers in the objective. Since all variables in the solution need to be non-negative we have:
0 · x1 < 1 · x1, 1 · x2 ≤ 1 · x2, 1 · x3 ≤ 4x3. We therefore have that α3 = 2 is a lower bound on the
optimal solution, i.e. the optimal solution must be at least 2.

So ideally we want the lower bounds to be as large as possible. If we check the vector (3,−1) we
will get a lower bound of α4 = 7. But this lower bound matches our upper bound. Since the value
of the optimal solution must be no greater than the value of the upper bound and no smaller than
the value of the lower bound, it therefore must be that α? = 7 is the value of optimal solution.
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4 The Primal Dual Theory

Let’s formulate the above discussion. For a given LP of the form:

min cᵀx (Primal)

s.t. Ax = b

x ≥ 0

For any y ∈ Rm s.t. yᵀAj ≤ cj ∀j = 1, . . . , n it must be the case that yᵀb ≤ α = cᵀx, for any
feasible solution x. We can find the best lower bound by solving:

max yᵀb (Dual)

s.t. yᵀA ≤ cᵀ

Notation: Throughout the rest of this section we will use Primal to denote the primal problem
above with A, c,b and Dual to denote the dual problem. We will also use α?, β? to denote the
optimal solutions of the primal and dual problems, respectively.

4.1 Weak duality theorem

The following theorem is a formulation of a rather straightforward idea that we brought up in our
discussion.

Theorem 2 (weak duality). Let x be a feasible solution to Primal and y a feasible solution to
Dual. Then cᵀx ≥ yᵀb.

Proof. Since x is feasible, Ax = b, and since y is feasible yᵀA ≤ cᵀ. Thus yᵀb = yᵀAx ≤ cᵀx.

Remark 3. Let α?, β?, denote the values of the optimal primal and dual solutions, respectively.

1. If the primal is unbounded (α? = −∞), then the dual is infeasible (notation: β? = −∞).

2. If the dual is unbounded (β? =∞) then it must be that the primal is infeasible (α? =∞).

3. The dual of the dual is the primal.

4.2 Strong duality theorem

Theorem 4. If either Primal or Dual are feasible, then α? = β?.

Proof. W.l.o.g suppose that Primal is feasible (the dual of the Dual is the primal). If Primal
is unbounded, then α? = −∞ = β? and we are done. Otherwise, let x? be the optimal solution for
Primal, i.e. α? = cᵀx?. We will show that there exists a y ∈ Rm s.t.:

yᵀA ≤ cᵀ ∧ yᵀb ≥ α? (2)
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If we show this, then this implies that the optimal solution to Dual is at least α?. But since the
weak duality theorem says that solutions to Dual are bounded from above by solutions to Primal
it must mean that β? = α?.

To show there exists a y ∈ Rm as stated in (2) we will use Farkas Lemma. Notice that to show
that such a y exists we can rule out the existence of the existence of a vector x ∈ Rn that respects:

Ax = b

cᵀx < α?

Notice however that finding such a vector x contradicts the minimality of α?. Thus, by Farkas
Lemma, such a vector y exists, and by weak duality β? = α? as we stated above.
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