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1 Overview

In our previous lecture we saw the application of the strong duality theorem to game theory, and
in particular how one can use the result to prove the minimax theorem, and then conclude the
existence of mixed Nash equilibrium in zero-sum games. In this lecture we will see how duality and
the minimax theorem can be applied to learning theory. In particular, we will introduce the concept
of boosting, informally proving that classifiers that perform only slightly better than random can
be turned into a classifier that is never wrong.

2 Learning Theory

We now study an application of duality to learning. More precisely we consider a classification
problem over a space X for which we are given a set of hypothesis (possible classifiers) H = {h :
X → {0, 1}}. The data is sampled from an unknown distribution q over X .

The weak learning assumption states that the set of hypothesis H is good in the following sense:
for any distribution q there exists a hypothesis h ∈ H which is wrong less than half the time (i.e is
better than a uniformly random classifier). Formally:

∃γ, ∀q, ∃h ∈ H, Px∼q[h(x) 6= c(x)] ≤ 1

2
− γ
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where c(x) is by definition the correct class (the true answer) of x ∈ X .

3 Boosting

Surprisingly the weak learning assumption implies something much stronger: it is possible to
combine the classifiers in H to construct a classifier which is always right. This is known as
strong learning. This is a consequence of the minimax theorem.

Theorem 1. Let H be a set of hypothesis satisfying the weak learning assumption, then there exists
a distribution p on H such that the weighed majority classifier:

cp(x) :=

{
1 if

∑
h∈H phh(x) ≥ 1

2

0 otherwise

is always correct, i.e, cp(x) = c(x) for all x ∈ X .
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Proof. All we have to do is to find the probability p distribution, that is, weights to assign to each
classifier h ∈ H. Let us define the matrix M ∈ {−1,+1}|X |×|H| such that Mij is +1 when classifier
hj is wrong on data xi and −1 otherwise.

Note that weak learning can be written as:

|X |∑
i=1

qiδhj(xi)6=c(xi) ≤
1

2
− γ

2
(1)

where δhj(xi)6=c(xi) is +1 when hj(xi) 6= c(xi) and 0 otherwise. We have Mij = 2δhj(xi)6=c(xi) − 1,
hence (1) can be written more compactly as:

qᵀMej ≤ −γ,

where ej is the j-th basis vector of R|H|. In the same manner of the proof of the minimax theorem,
we know that we can find such a j for all q, i.e:

min
q

max
j

qᵀMej = min
q

max
p

qᵀMp ≤ −γ

where q is a distribution on X and p is a distribution on H and where the equality follows from the
fact that the basis vectors are the basic feasible solutions of the standard simplex. By the minimax
theorem:

max
p

min
q

qᵀMp = max
p

min
i
eᵀiMp ≤ −γ

i.e, there exists p a distribution over H such that for all i, (Mp)i ≤ −γ. This implies that the
weighted classifier defined in the statement of the theorem is always correct.
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