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1 Duality revisited

In this section, we will give a slightly different perspective on duality. Consider a constrained
optimization program:

min
x∈Rn

f(x)

s.t x ∈ K
where K is the feasible set of the program. Then it is clear that this problem is equivalent to:

min
x∈Rn

g(x)

where g is a function such that:

g(x) =

{
f(x) if x ∈ K
+∞ otherwise

(1)

Indeed, when x /∈ K, g(x) = +∞ and the minimum of g will not be attained at this point. When
x ∈ K, then f and g coincide and have the same minimum. So buy “encoding” the feasible set K
into the function g, we transformed a constrained program into an unconstrained one.

More specifically, consider the convex optimization program:

min
x∈Rn

f(x)

s.t g(x) ≤ a
h(x) = b

(2)

where f , g and h are convex. The following discussion can easily be adapted to an arbitrary number
of constraints. Let us denote by K the (convex) feasible set of this program, then the function:

g(x) = max
λ≥0, µ∈R

f(x) + λ
(
g(x)− a

)
+ µ

(
h(x)− b

)
satisfies the condition of Equation (1). Indeed, consider the case where g(x) > a, then by taking
λ→∞ (λ arbitrarily large), we see that g(x) = +∞. Similarly, if h(x) 6= b, then either h(x) > b, in
which case we obtain g(x) = +∞ by taking µ→∞, or h(x) < b and we obtain the same conclusion
by taking µ→ −∞.

Let us denote by L(x, λ, µ) the function:

L(x, λ, µ) = f(x) + λ
(
g(x)− a

)
+ µ

(
h(x)− b

)
Then we have just shown that the primal problem (2) is equivalent to:

min
x∈Rn

max
λ≥0, µ∈R

L(x, λ, µ) (3)
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But you should remember from class, that we defined the Lagrgange dual function as:

g(λ, µ) = min
x∈Rn

L(x, λ, µ)

and the dual problem as the following maximization of the Lagrange dual function:

max
λ≥0, µ∈R

g(λ, µ) = max
λ≥0, µ∈R

min
x∈Rn

L(x, λ, µ)

Observe the nice symmetry with Equation 3 where the only difference is the order of the max and
min operations: the primal and dual problems are both optimizing the Lagrangian of the problem in
different orders.

The weak duality theorem can be re-interpreted in this context as the following inequality:

max
λ≥0, µ∈R

min
x∈Rn

L(x, λ, µ) ≤ min
x∈Rn

max
λ≥0, µ∈R

L(x, λ, µ)

This inequality is true without any assumption on L (hence on f , g and h). The strong duality
theorem states that the inequality is in fact an equality:

max
λ≥0, µ∈R

min
x∈Rn

L(x, λ, µ) = min
x∈Rn

max
λ≥0, µ∈R

L(x, λ, µ)

In other words, the order in which the parameters are optimized over does not matter (swapping
the min and max operators is allowed). So Slater’s condition seen in class can be interpreted as a
sufficient condition under which the swapping of min and max operators is valid.

Remark. The Lagrange dual function g being (pointwise) a minimum of affine functions is a concave
function. Hence the dual problem of a convex minimization problem is a concave maximization
problem.

Remark. The interpretation of the strong duality theorem as swapping a min and max operator is
reminiscent of Von Neumann’s minimax theorem that we used to define the value of two-players,
zero-sum games. In fact, the strong duality theorem under Slater’s condition can be seen as a
generalization of Von Neumann’s minimax theorem.

2 Taking duals

Let us consider the following convex optimization program:

min
x∈Rn

−
d∑
i=1

log(bi − aᵀi x)

s.t aᵀi x− bi ≤ 0, 1 ≤ i ≤ d

The motivation is to find a feasible point x of the set of linear inequalities aᵀi x − bi (defining a
polytope) which is far from the boundary of the polytope. Note that as aᵀi x gets close to bi, the
value of the objective function converges to +∞.

The goal of this section is to derive the dual of the above problem. Simplifying the primal is a good
thing to do before computing the dual. Here, we can introduce extra variables yi = bi − aᵀi x, such
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that the original problem can be rewritten:

min
x∈Rn,y∈Rd

−
d∑
i=1

log(yi)

s.t yi ≥ 0, 1 ≤ i ≤ d
yi = bi − aᵀi x, 1 ≤ i ≤ d

the advantage is that the arguments of the logs are now simpler. We then rewrite the problem in
“minmax” form by introduction a dual variable λi for each inequality constraint, and a dual variable
µi for each equality constraint:

min
x∈Rn,y∈Rd

max
λ≥0, µ∈Rd

−
d∑
i=1

log(yi)−
d∑
i=1

λiyi +

d∑
i=1

µi(a
ᵀ
i x− bi + yi)

The dual problem is obtained by swapping the max and the min:

max
λ≥0, µ∈Rd

min
x∈Rn,y∈Rd

−
d∑
i=1

log(yi)−
d∑
i=1

λiyi +

d∑
i=1

µi(a
ᵀ
i x− bi + yi)

We now need to understand the Lagrange dual function:

g(λ, µ) = min
x∈Rn,y∈Rd

−
d∑
i=1

log(yi)−
d∑
i=1

λiyi +

d∑
i=1

µi(a
ᵀ
i x− bi + yi)

First thing to note is that if
∑d

i=1 µiai 6= 0, then the minimum is −∞ (we can always make xj
arbitrarily large or small for coordinates j such that

∑d
i=1 µiaij 6= 0). When

∑d
i=1 µiai = 0, then

the function no longer depends on x and we are left with optimizing over y ∈ Rd. Singular points
are given by:

1

yi
= µi − λi, 1 ≤ i ≤ d

In summary, we have:

g(λ, µ) =

{∑d
i=1 log(µi − λi)− µᵀb + n if

∑d
i=1 µiai = 0

−∞ otherwise

And the dual problem can be rewritten as:

max
λ≥0, µ∈Rd

d∑
i=1

log(µi − λi)− µᵀb + n

s.t
d∑
i=1

µiai = 0

Finally, we observe that the objective function is decreasing in λi, so we should always take λi as
small as possible, i.e. equal to zero. The dual thus simplifies:

max
µ∈Rd

d∑
i=1

logµi − µᵀb + n

s.t
d∑
i=1

µiai = 0
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3 Stochastic gradient descent

The stochastic gradient descent algorithm is a variant of the gradient descent algorithm where the
gradient of the function ∇f(xt) at iteration t is replaced by a random variable gt such that:

E[gt] = ∇f(xt) and E[‖gt‖2] ≤ G2

In other words, gt is equal to the true gradient in expectation and has bounded expected norm.
The algorithm is described in Algorithm 1.

Algorithm 1 Stochastic gradient descent
Require: x1

1: for t = 1 to T do
2: xt+1 ← xt − ηtgt
3: end for
4: return x̄T = 1

T

∑T
t=1 xt

Note that as opposed to standard gradient descent, the gradient is now stochastic and the algorithm
is no longer strictly descending (the value of the current solution is not necessarily decreasing). This
explains the last line of the algorithm where instead of returning the solution at the lest step, we
return the average of all the solutions seen so far to “smooth out” the noise.

Theorem 1. With step size ηt = D
G
√
t
, the solution x̄T returned by Algorithm 1 is such that:

E[f(x̄T )]− min
x∈Rn

f(x) ≤ 3GD

2
√
T

Proof. The proof I didn’t finish in section was taken from the excellent book Online Convex Opti-
mization by Elad Hazan whose draft is available at http://ocobook.cs.princeton.edu/. What
is interesting is that the proof is a direct application of the theorem we saw in class given regret
bounds for gradient descent in online convex optimization.

Application to machine learning. At first glance, stochastic gradient descent might not seem
very useful: how to find a gt equal to the true gradient in expectation? is it much simpler than
computing the true gradient? It turns out that optimization problems coming from machine learning
are very amenable to stochastic gradient descent.

A standard problem in machine learning is the following: given a data set {(xi, yi), 1 ≤ i ≤ n},
the goal is to find a model fw parametrized by w which fits the data well. The fit of the model at
data point i is captured by a loss function `(fw(xi), yi). The optimization problem thus takes the
following form:

min
w

1

n

n∑
i=1

`(fw(xi), yi)

The true gradient of the objective function is given by:

1

n

n∑
i=1

∇w`(fw(xi), yi) (4)
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and requires iterating over the n data points, which is prohibitive for very large datasets.

Instead, consider gw computed by the following algorithm:

Algorithm 2 Stochastic gradient
Require: w
1: i← pick uniformly at random between 1 and n
2: return gw = ∇w`(fw(xi), yi)

gw is now a random vector, each i is chosen with probability 1
n , hence the expected value of gw is

given by:

E[gw] =
1

n

n∑
i=1

∇w`(fw(xi), yi)

which is exactly the gradient computed in Equation 4. So gw can be used as a “stochastic” gradient
in the stochastic gradient algorithm. Note that now, each iteration of the gradient descent only
requires accessing one data point of the dataset, which induces huge performance gains!
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