
AM 221: Advanced Optimization Spring 2016

Prof. Yaron Singer Section 8 — Wednesday, Mar. 23rd

This section gives an overview of different methods to solve constrained optimization problems.
The general idea is to reduce the problems to unconstrained or equality-constrained optimization
programs that are easier to solve.

1 Equality-constrained problems

In this section, we consider problems where the only constraints are linear equality constraints. In
other words:

min
x∈Rn

f(x)

s.t Ax = b
(P)

with A ∈ Rm×n and b ∈ Rm. As usual, we can assume that m ≤ n and that A has full row rank.

1.1 Solving (P) through the dual

The dual of (P) is given by:
max
λ∈Rm

λᵀb+ min
x∈Rn

(
f(x)− λᵀAx)

This is an unconstrained concave optimization over the variable λ ∈ Rm. In cases where the dual
function is differentiable (more specifically the minimum over x ∈ Rn), then we can solve the dual
problem using the algorithms we saw for unconstrained convex minimization and applying them to
the negative of the dual function.

Once we have a solution λ∗ to the dual, we can use the KKT conditions to recover an optimal
solution x∗ ∈ Rn. However, note that even if the KKT conditions fully characterize a pair of
primal-dual solutions, it might not always be possible to inverse the conditions analytically and
obtain a closed-form expression for x∗ as a function of λ∗.

1.2 Solving (P) via a change of variable

The null space of A, kerA as dimension n −m. Let us consider a matrix F ∈ Rn×n−m such that
the column space of F is equal to the kernel of A. In other words, the n−m columns of F form a
basis of kerA. Finding such an F can easily be done using Gaussian elimination.

It is now easy to see that:

{x ∈ Rn |Ax = b} = {Fz+ x̂ | z ∈ Rn−m}
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where x̂ is any solution to the equation Ax = b. Indeed, the two vector spaces have the same
dimension (n−m) and the right-hand vector space is contained in the left-hand one since:

A(Fz+ x̂) = 0 + b = b, z ∈ Rn−m

Given such a matrix F and x̂, we can now rewrite the original problem (P) as:

min
z∈Rn−m

f
(
Fz+ x̂

)
which is now an unconstrained convex optimization problem (the objective function is the compo-
sition of a linear and a convex function).

1.3 Equality-constrained Newton’s method

Remember that for unconstrained problems, the descent direction in Newton’s method−∇2f(x)−1∇f(x)
was found by minimizing a quadratic approximation of f around the current solution x:

min
y∈Rn

∇f(x)ᵀy +
1

2
yᵀ∇2f(x)y

For the equality-constrained problem (P), the same intuition would suggest solving the following
problem to find a “good” descent direction:

min
y∈Rn

∇f(x)ᵀy +
1

2
yᵀ∇2f(x)y

Ay = 0

(1)

That is, we are still trying to minimize a quadratic approximation of f around x, but under the
additional constraint that the new solution x + y stays feasible (assuming that x is feasible, then
A(x+ y) = b is equivalent to Ay = 0).

The optimal y solution to (1) can be found by writing the KKT conditions associated with problem
(1); y ∈ Rn is optimal iff there exists w ∈ Rm such that:

∇f(x) +∇2f(x)ᵀy +Aᵀw = 0

Ay = 0

This is a system of n+m equations in the n+m variables y and w. Once the optimal direction y
is found by solving this system, then we update the current solution x by x← x+ ty, where t > 0
is found either by exact or backtracking line search as already seen. Remarkably, since Ay = 0, we
are guaranteed that the updated x remains feasible for any t > 0.

It is possible to analyze this adaptation of Newton’s method to equality constrained problems.
In fact, the analysis can be reduced to the one of unconstrained Newton’s method by proving
that the direction y defined above coincide with the Newton’s descent direction for the modified
unconstrained problem introduced in Section 1.2. Consequently, we obtain the same convergence
guarantee as for the unconstrained Newton’s method.
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2 Inequality-constrained problems

We now consider the following inequality-constrained problem:

min
x∈Rn

f(x)

fi(x) ≤ 0, 1 ≤ i ≤ m

We will show how to solve this problem by reducing it to an unconstrained problem. For simplicity
of exposition, we do not include equality constraints, but the analysis below can accommodate these
constraints as well: in this case, the problem is reduced to an equality-constrained problem that
can be solved using the techniques from Section 1.

As we saw in the section on duality (Section 7), this problem can be re-written in unconstrained
form by “encoding” the constraints in the objective function:

min
x∈Rn

f(x) +

m∑
i=1

I
(
fi(x)

)
where:

I(u) =

{
0 if u ≤ 0

+∞ otherwise

What we lose is that the objective function is now longer convex nor differentiable. The idea is then
to approximate I(u) by a smooth convex function. A good candidate is the so-called logarithmic
barrier function:

Ît(u) = −
1

t
log(−u)

where t > 0 is a parameter that will be discussed below. It is interesting to note that as t → ∞,
Ît(u) converges pointwise to I(u), which justifies the choice of Ît. We will henceforth denote by
x∗(t) the optimal solution to:

min
x∈Rn

f(x)−
m∑
i=1

1

t
log
(
− fi(x)

)
or equivalently, writing φ(u) = − log(−u):

min
x∈Rn

tf(x) +
m∑
i=1

φ
(
fi(x)

)
(2)

Note that x∗(t) can be found using, for example, Newton’s method for unconstrained problems.
The gradient and hessian of the “barrier” part of the objective are easily computed:

∇φ
(
fi(x)

)
= −∇fi(x)

fi(x)

∇2φ
(
fi(x)

)
=
∇fi(x)∇fi(x)ᵀ

f2i (x)
− ∇

2fi(x)

fi(x)

Analyzing the KKT conditions of (2), it is possible to show that x∗(t) is m
t -optimal for any t. This

suggests a very simple algorithm to solve an inequality-constrained optimization program to a given
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accuracy ε: solve (2) with t = m
ε . Unfortunately when ε is small, this method forces t to be very

large and the Hessian of the problem (2) is ill-conditioned unless x is not too close to the boundary
of the feasible set.

The solution is to start with a small t and solve (2) for increasing values of t, using the optimal
value x∗(t) found at a given iteration as the starting point for the next iteration. The resulting
algorithm is called the barrier method and is described in Algorithm 1:

Algorithm 1 Barrier method with parameter µ > 1

1: t← 1, x← feasible solution
2: while m

t ≥ ε do
3: compute x∗(t) by solving (2) using Newton’s method and using x as the initial solution
4: x← x∗(t)
5: t← µt
6: end while
7: return x

Remark on finding a feasible initial solution. Most of the techniques we covered required
starting from a feasible solution. For equality-constrained problems, this can be done by solving a
linear system. For an inequality constrained problem of the following form:

min
x∈Rn

f(x)

fi(x) ≤ 0, 1 ≤ i ≤ m
(3)

a feasible solution can be found by solving the following problem:

min
x∈Rn, s∈R

s

fi(x) ≤ s, 1 ≤ i ≤ m
(4)

whose variables are x ∈ Rn and s ∈ R. It is clear that if (3) is feasible, then a solution to (4) will
be a pair (x, s) where s ≤ 0 and x is feasible for (3). Problem (4) is itself an inequality-constrained
program that can be solved using the barrier method. The difference is that finding a feasible
starting solution for (4) is easy: consider an arbitrary x ∈ Rn, and choose s = max1≤i≤m fi(x).

References. This section is a summary of Chapters 10 and 11 from Convex Optimization by Boyd
and Vandenberghe. More details, and in particular the convergence analysis of the various methods
we saw can be found in the original book.
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