
©	2017	American	Medical	Association.	All	rights	reserved.	
	

 
Supplementary Online Content 

 
Green B, Horel T, Papachristos AV. Modeling contagion through social networks 
to explain and predict gunshot violence in Chicago, 2006 to 2014. JAMA Intern 
Med. Published online January 3, 2017. doi:10.1001/jamainternmed.2016.8245 
 

 

eText. Supplementary Text 
 
eMethods. Supplementary Methods 
 
eFigure 1. Index Crime in Chicago (Rate per 100,000), 1965 to 2013 
 
eFigure 2. Homicide in Chicago (Rate per 100,000), 1965 to 2013 
 
eFigure 3. Monthly Counts of Fatal and Nonfatal Gunshot Injuries in Chicago, 
2006 to 2014 
 
eFigure 4. Hawkes Model Dynamics Over an Example Network 
 
eFigure 5. Shootings per Day and Best-Fit Curve During the Study Period 
 
eFigure 6. Learned Parameters Relative to Optimal From Five Simulations of the 
Hawkes Contagion Process 
 
eFigure 7. Results From 10,000 Monte Carlo Simulations of the Study Period 
Without Any Social Contagion 
 
eFigure 8. Temporal Difference Between Co-Offending and Gunshot Infection 
 
eFigure 9. Distribution of Cascade Sizes Found in the Network 
 
eFigure 10. Cumulative Distribution Function for the Demographics, Contagion, 
and Combined Prediction Models 
 
 
This supplementary material has been provided by the authors to give readers 
additional information about their work. 
  

Downloaded From: http://jamanetwork.com/ on 01/03/2017



©	2017	American	Medical	Association.	All	rights	reserved.	
	

eText. Supplementary Text 

Glossary of social network and epidemiological terms 
 
Cascade: A series of events in which an individual with a particular state transmits that 
state to his or her associates, who in turn transmit that state to their associates, and so on. 
A cascade can also refer to the nodes and edges involved in a particular transmission 
history. 
 
Connected Component: A subgraph of a network in which every node is connected to 
every other node along edges contained in the subgraph. The nodes in a connected 
component are not reachable along network paths by any nodes outside the connected 
component. 
 
Co-Offending: When two or more individuals jointly engage in a crime together.  
 
Co-Offending Network: A social network created by linking unique individuals to each 
other through acts of co-offending. In co-offending networks, the nodes represent the 
unique individuals and the ties connect individuals who have co-offended.  
 
Degree of separation: The distance between two nodes, measured as shortest number of 
edges that must be traversed to connect them. A friend is one degree of separation away 
(and is known as a first-degree neighbor), a friend of a friend is two degrees away, and so 
on. 
 
Edge (or tie): A defined relationship between two nodes, in this study co-offending 
together. 
 
Infection: In this study, infection refers to being shot, i.e., someone becomes infected 
when they become a gunshot subject. 
 
Infector: The person most responsible for causing another individual to become infected 
(i.e., shot) by exposing that subject to gun violence. The infector is not assumed to be the 
one who shoots the subject, but rather the one who exposes him or her to the risk of 
gunshot violence. 
 
Largest Connected Component: The connected component of a network that contains 
the most nodes. 
 
Network Neighbors: Nodes that are connected through a path in the network. First-
degree neighbors are directly connected by an edge, second-degree neighbors are 
connected indirectly through one intermediary (i.e., by two edges), and so on. 
 
Node: A unique individual in a network; in this study representing individuals arrested in 
Chicago between 2006 and 2014. 
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Offending: Committing a crime. 
 
Social Contagion: The transmission of a state (e.g., beliefs; in this study, being a gunshot 
subject) from one person to another through social interaction. 
 
Social Network: A defined set of social relationships or interactions (edges) among a set 
of social actors (nodes).  
 
Subject: Someone who has been shot by a gun (excluding suicides, accidents, and 
shootings involving law-enforcement personnel). 
 
Violence event: An event in which someone becomes a subject of gun violence 
(including events involving subjects who have previously been shot). 
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1. Gun violence in Chicago 

 

Our study examined co-offending networks in a single city: Chicago, IL. While studies of 

co-offending networks in other cities find many similarities with those in Chicago,1-5 it is 

nonetheless important to situate our study within the broader context of Chicago’s gun 

violence problem.  

 

Over the past two decades, Chicago, like many other U.S. cities,6,7 has seen 

unprecedented declines in crime and is currently experiencing some of its lowest rates of 

violent crime since the mid-1960s. eFigure 1 illustrates this point by plotting the annual 

index crime rate in Chicago from 1965 to 2013.8 Rates of index crime remained relatively 

stable between 1966-1973 at approximately 3,300 per 100,000 and then jumped 

dramatically around 1973 to 5,882 per 100,000. Index crime rates fell again until about 

1983 when they jumped to more than 8,000 per 100,000 during the mid-1980s. The apex 

of index crimes in Chicago occurred in 1991 when the rate was 10,647.9 per 100,000. 

After 1991 index crime fell at a steady rate throughout the late-1990s into the present 

day. In 2013, for example, the index crime rate was 4,251.2 per 100,000—approximately 

the same rate as in 1966.   

 

Homicides in Chicago followed the same general pattern as overall index crimes. eFigure 

2 plots Chicago’s homicide rate (per 100,000) from 1965 to 2013. eFigure 2 clearly 

shows a parallel decline to that of overall index crime. Homicide increased rapidly 
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around 1967 before leveling off in the mid-1970s and early-1980s (with some 

fluctuations throughout that period). Homicide reached its apex in 1992 with a rate of 

31.8 per 100,000. After that point, homicide declined drastically (despite some periodic 

spikes) until 2004. Between 2004 and the present, homicide rates hovered around 14 per 

100,000, though they jumped in 2012 to 17.6 per 100,000. The homicide rate in 2013 was 

14.1 per 100,000—the lowest overall rate since 1966.    

 

The main variable of interest in the present study is fatal and non-fatal gunshot 

victimization, excluding self-inflicted and accidental gunshot injuries as well as legal 

interventions (i.e. police-related shootings). eFigure 3 plots the monthly combined 

number of fatal and non-fatal gunshot injuries during the observation period, 2006 to 

2014. The expected seasonal variation of gun violence,9,10 with peaks in the summer 

months, is also apparent. Average monthly rates during the study period ranged from 

71.25 shootings in February to 245.5 in July. 

 

In short, Chicago’s rates of gun violence are higher than the national average, but are 

currently at some of the city’s lowest rates in recent decades. In many ways, crime 

patterns in Chicago are similar to those in other cities, including the spatial distribution of 

crime and the concentration of crime in small networks.11-15 The PI has written 

extensively on gun violence in Chicago and refers readers seeking further information to 

other relevant publications.11,12,16-18 
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eMethods. Supplementary Methods 

1. Data description 

 

The data used in this study were provided to the PI as part of a non-disclosure agreement 

with the Chicago Police Department (CPD). The PI controlled access to the data and 

supervised all data analyses and processing. Two sources of data were used in the present 

study. The first set of data entailed every arrest recorded by the CPD from January 1, 

2006 to March 31, 2014 (N=1,458,957). These data include detailed incident-level 

information for each arrest, including the demographic information of each arrested 

individual. Note that these data include only arrests, and not non-custodial stops or 

contacts. The second dataset details incident-level data on all fatal and non-fatal 

shootings during the same period: these include homicides and non-fatal injuries 

(excluding self-inflicted and accidental injuries as well as those occurring during legal 

intervention). As with the arrest information, the shooting data also contained detailed 

information about each shooting, including the demographic information of the victims. 

Events and individuals are uniquely identified across both datasets using internal 

alphanumeric codes created by CPD (which we refer to as Event Codes and Identity 

Codes, respectively), thereby allowing us to match events and people over time and 

across datasets.   
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1.1 Data limitations 

 

These data were not without limitations. First, police data have known biases, including: 

(a) undercounts of the true volume of crime because most crimes go unreported; (b) 

problems caused by data-entry errors or the use of aliases; and (c) biases in criminal 

justice practices and polices, including racial and neighborhood profiling, that might 

skew the true geographic and socio-demographic distribution of crime.19-21 Regarding 

this last point, we make no claims of whether arrests were justified, but simply rely on 

them as the systematic recording of an observed behavior. Second, since crime is 

generally underreported, our co-offending data most likely underestimates the social ties 

related to risky behavior. And, third, without comparative data from other cities, it is 

difficult to know how representative the Chicago co-offending network is of co-offending 

more generally.  

 

2. Data processing 

 

In this section we describe how we processed police records into a co-offending social 

network with detailed attributes for each person. See Figure 1 for a diagram of this 

process. 
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2.1 Missing data 

 

We first cleaned the arrest records to infer and fill in missing information. 

 

Twenty-three percent (N=331,592) of the arrest records had no labeled Event Code (EC). 

In these instances, we determined which entries came from the same event by matching 

entries based on their date, time, and location. If multiple entries had identical 

information in all of these fields, we assumed they were from the same arrest and 

generated a new, unique EC for all such entries. We also provided unique ECs for all 

other entries where no match was found. 

 

A small portion of entries (N=2,595, 0.2%) contained no recorded Identity Code (IC). For 

some entries (N=873), we identified the proper IC by finding other arrest records where 

the offender had the same birthdate, race, sex, and home address. For the rest of the cases 

(N=1,722), we assigned new, unique ICs. Where possible, we assigned the same IC to 

records that matched on birthdate, race, sex, and home address. 

 

Next, we cleaned the entries (N=1,087, 0.07%) where there was no recorded birthdate for 

the offender. In 85% of these cases (N=927) we found the correct birthdate based on the 

other arrest records of the same individual, where the proper birthdate was recorded. 

Where this was not possible (N=160), we removed the entry from the data. 
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We performed a similar procedure to identify the residential neighborhood of offenders 

when this data was missing. 35,137 records (2.4%) involved individuals who lived in 

Chicago but did not have a labeled neighborhood. (We defined neighborhoods based on 

which police district the offender lived in. We ignored smaller geographic divisions such 

as police beat because the data within each group was too sparse.) We identified the 

district for 28,098 of these records based on other arrests of the same individual. This left 

7,039 records from Chicago where the neighborhood was not recorded, plus 162,026 

records from people who do not live in Chicago. We pooled these 169,065 offenders into 

a single “null” neighborhood.  

 

Finally, there were a few entries (N=130, 0.009%) with no labeled sex for the offender. 

We determined the correct sex for 3 of these cases by finding other arrest records with the 

same identity code. We imputed the other 127 individuals to be male, as 85% of the 

arrested individuals were male. 

 

 

2.2 Forming a social network 

 

We used the arrest records to generate a bipartite network that connects arrest events and 

people (Figure 1). That is, the network connects each person to every arrest in which he 

or she was involved. Equivalently, the network connects each arrest event to all of the 

people arrested. The network is clearly bipartite since people cannot be linked with 
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people, and arrests cannot be linked with arrests. This network has a total 1,189,225 

arrest event nodes, 462,516 person nodes, and 1,458,957 edges. 

 

We performed a bipartite projection on the person nodes to obtain a one-mode social 

network, where nodes represent each person who was arrested during the study period. 

This network contained 462,516 nodes and 467,506 edges. Unweighted edges connect 

every pair of people who were arrested in the same event during the study period, 

connecting individuals based on their association with the same crime.  

 

Edges connected pairs of individuals who co-offended together at some point during the 

study period. Due to the one-mode structure, incidents in which more than two people co-

offended together were represented by edges between every pair of individuals involved 

rather than all individuals to a common incident. More than two-thirds of the arrests 

involving multiple people had only two participants, hoewever. Another 18% contained 

three people, leaving only 13% of arrests that involved more than three people. This 

shows that our one-mode co-offending network is a reasonable representation of co-

offending dynamics. 

 

We treated the co-offending network as static rather than forming each edge at the date of 

first co-offense. Although the co-offending events occur at specific points in time, 

previous research on co-offending has shown that the individuals involved typically 

already have close existing relationships.22 Because we can identify the presence of these 
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relationships but not the date when those relationships formed, we generate a static 

network that includes every co-offense throughout the study period. 

 

While it is possible to build a weighted social network with edge weights corresponding 

to the number of co-arrests between individuals, we did not do this for three reasons. 

First, it is difficult to determine if two people appear together in the arrest data multiple 

times because they actually co-offended together multiple times or simply faced multiple 

charges from the same co-offense. Second, there are very few edges between individuals 

who co-offended multiple times together—a finding consistent with prior research on co-

offending networks.3 94% of edges have weight=1, 5% of edges have weight=2, and all 

larger edge values account for the remaining 1% of edges. Finally, we found no evidence 

that high-weight edge facilitate the transmission of gunshot victimization. For each edge 

weight represented in the network, we looked at the percentage of pairs where both 

individuals were infected. The probability that such a pair exists actually goes down as 

the edge weight increases. In particular, out of the 269 highest-weight edges (weight>5), 

there is not a single pair where both people were infected. This leads us to believe that the 

few high-weight edges that exist have little or no special effect on the contagion of 

violence. 
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2.3 Adding victim attributes 

 

We used gunshot victimization records to determine our dependent variable of whether or 

not any individual in the data was a victim of a fatal or non-fatal gunshot injury during 

the study period. For each victim, we record the date of every fatal and non-fatal gunshot 

victimization associated with that individual. Eleven percent (N=1,251) of the victims of 

non-fatal gunshots had multiple victimizations during the study period, with a maximum 

of five. Twelve percent (N=247) of the victims of fatal gunshots had previously during 

the study period been the victim of a non-fatal gunshot. 

 

Although we restricted ourselves to gunshot victims who are also in the co-offending 

network, we still captured the vast majority of victims in our analysis: 93% of nonfatal 

victims members of the co-offending arrest network, and 80% of fatal victims are in the 

network. 

 

 

2.4 Largest connected component 

 

Decomposing the co-offending network into disjoint connected components yielded 

many small components and one giant component. This is similar to the pattern observed 

in other empirical networks.23,24 More than half of the nodes (56%) are isolated, 

corresponding to people who were never arrested with anyone else. Of the 284,876 

connected components, only one contains more than 30 nodes. This largest connected 
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component contains 30% of the nodes in the network (N=138,163), 89% of the edges 

(N=417,635), and 74% of the victims (N=9,773). As is standard in social network 

analyses,23 we take the largest connected component (LCC) as the focus of our study.  

 

The largest connected component resembled a typical social network. The network’s 

degree distribution followed a power-law distribution with scaling exponent 1.39. This 

means that the LCC is a scale-free network, which is very common among social 

networks.24 The LCC has a clustering coefficient of 0.6 and an average path length of 8.3. 

In comparison, an Erdös-Réyni random graph of the same size has a clustering coefficient 

of 0.00003 and an average path length of 6.78. Since the LCC is highly clustered with a 

similar average path length compared to a random graph, it is a small-world network.25 

 

3. Homophily and confounding versus contagion 

 

Understanding how gunshot victimization might make its way through a network requires 

understanding different reasons for how patterns of gunshot violence might emerge in a 

network: failing to account for all possible explanations can lead to overestimating the 

effects of social contagion.26-28 We consider three potential explanations: individuals 

associate with similar peers (homophily), individuals are exposed to the same 

environmental factors (confounding), and individuals influence one another’s behavior 

over time (contagion).26,27,29,30 To distinguish between these explanations, we analyzed 

the temporal patterns of victimization with those generated by simulations that account 

for homophily and confounding but not contagion. We ran 10,000 Monte Carlo 
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simulations of the study period, assigning to each victim a new victimization date that is 

consistent with his or her exposure to violence based on risk factors and environmental 

influences. By shuffling the infection dates between victims as described below, the 

simulations generated a set of networks that 1) retained the aggregate patterns of gun 

violence, as measured by the number of victimizations each day, and 2) accounted for the 

effects of homophily and confounding but assume no social contagion.  

 

Homophily would explain the temporal clustering of victims in the network if people co-

offend with others who have similar risk factors and therefore are likely to be shot at 

similar times. Many prior studies have shown strong relationships between certain risk 

factors and exposure to violence,31 a relationship that our data corroborates. In our 

simulations we controlled for whatever traits cause two individuals to co-offend together 

by holding constant the network structure and victim identities: each victim has the same 

neighbors in both the real and simulated data. Confounding would explain the pattern of 

victimizations if features such as age and neighborhood expose similar individuals to 

violence at the same time. Our simulations controlled for confounding by shuffling 

victimization dates only between individuals who are the same age, gender, and ethnicity; 

live in the same neighborhood; and both either belong or do not belong to a gang (if an 

individual does not match with anyone else across all of these features, that person’s 

infection date is not altered). We also controlled for the fact that violence rates fluctuate, 

following a predictable seasonal trend of rising in the summer and declining in the 

winter.9,10 Furthermore, some years have more incidents of violence than others and 

crime in the US and Chicago declined during the observation period.7,11 In order to 
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control for violence rates over time, we simulated the exact same number of infections 

per day as observed in the data. Together, these controls ensured that we accurately 

represented each person’s exposure to violence as it relates to individual and 

environmental risk factors. 

 

This approach allowed us to determine the extent to which the observed concentration of 

victims could be explained without any social contagion. If the concentration of victims 

was primarily due to homophily and environmental confounding, the simulations would 

accurately recreate the observed pattern of gunshot violence. On the other hand, if social 

contagion was responsible for some victimizations, we expected to see that the observed 

victimizations appear closer together in time than the simulations could explain. 

 

Because we held constant the set of victims and infection dates, we could simulate an 

infection process that lacks social contagion by shuffling the matching between victim 

identity and victimization date. Given our method’s similarity to the previously-

developed “Shuffle Test,”29 we refer to our approach by the same name. 

 

Our Shuffle Test ran as follows: 

1) Take the LCC and identify the gunshot victims from the data. 

2) Divide all the victims into groups that share the same birth year, gender, ethnicity, 

residential neighborhood, and gang membership status (i.e. belong to a gang or 

not). 
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3) Within each group, randomly permute the infection dates associated with each 

individual. Individuals in groups by themselves retain the same infection date.  

 

This yielded a new version of the LCC, with the same victim population and overall set 

of infection dates as the raw data. Each victim was infected at different times during the 

simulated study period compared to the observed data, but in a manner that is consistent 

with the rate at which he or she was exposed to violence. 

 

For each simulation, we measured how many days passed between infections within 

every pair of first-degree associates who were both victims (N=9,568). If one or both 

victims were infected multiple times during the study period, we take the minimum time 

difference between infections. As our network and set of victims are fixed based on the 

data, the quantity and identities of such pairs remain constant in every simulation. If these 

pairs of victim are shot equally close together in time in the data and simulations, then we 

will be able to conclude that homophily and confounding are sufficient to explain the 

data. Alternatively, if the data exhibits a higher degree of temporal clustering, this will 

imply that explanations beyond homophily and confounding are necessary. 

 

Our comparisons of simulations with the data show that homophily and confounding 

cannot fully explain the concentration of gunshot victims within the network (eFigure 7). 

As reported in the main text, these pairs are shot on average 60 days closer together than 

the simulations can explain. We similarly found that the median time difference between 

victimizations is 75 days shorter in the data than in the simulations. We then evaluated 
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how many pairs become victims within a specific, short period of time. While 7.6% of 

pairs in the data became victims within 30 days of one another (N=726), there were only 

4.0% (3.7%-4.4% 95CI) such pairs in the simulations. Homophily and confounding, then, 

explained only 52.6% of the gunshot victimization that occurred between associates 

within 30 days. Similarly, 17% of pairs in the data became victims within 100 days of 

one another, compared to only 12% in the simulations. These results indicated that 

victims are clustered both temporally and topologically in a manner that homophily and 

confounding cannot fully explain. This suggested that considering social contagion may 

help explain when and where victimizations occur in the network. We turn in the next 

section to modeling this social contagion directly. 

4. Hawkes contagion model 

 

We modeled the contagion of violence using a multi-dimensional Bayesian Hawkes 

process over the co-offending network. We first present the general definition of Hawkes 

Processes, then instantiate and adapt it to the contagion of gun violence over a network. 

 

 

4.1 Hawkes processes 

Hawkes processes are a class of self-exciting temporal point processes originally 

introduced by Alan Hawkes in the early 1970s,32 and have recently become common as a 

way to model contagion and diffusion processes. Applications include the spread of 

seismic events,33 information spread in social networks,34 and stock market trading 

dynamics.35 
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A convenient way to describe temporal point processes is through their conditional 

intensity function, which describes the instantaneous probability of occurrence of an 

event at any given time t. For Hawkes processes, the conditional intensity function can be 

written as the sum of endogenous time-varying intensities (capturing the intra-network 

influence of the events preceding time t) and an exogenous intensity (capturing the 

influence of all extra-network factors). 

 

Formally, for a D-dimensional Hawkes process with N infection events, let us introduce 

the set of events  E = {(ti ,ki )}1≤i≤N  where ti denotes the time of event i and ki the dimension 

(or coordinate) on which it occurs. The conditional intensity function is defined as 

follows: 

 λk (t) = µk + φki ,k
i=1

N

∑ (t − ti )    (1) 

where M = (µk )1≤k≤D  is the vector of exogenous intensities (also known as background 

rates) and the functions Φ = (φi, j )1≤i, j≤D  is the matrix of endogenous kernel functions (also 

known as exciting functions). For a pair of coordinates (u,v), φu,v(t)  models the influence 

of coordinate u over coordinate v after t time has passed since u was infected. The kernel 

functions are non-negative and causal (i.e. φu,v(t) = 0∀t < 0 ). In particular, this implies that 

the summation in Equation (1) is only over the indices i such that ti<t. 
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From this definition, we see that the Poisson process can be characterized as a special 

case of the Hawkes process, with a constant exogenous intensity and no dependence on 

past events. That is, λ(t) = λ . 

 

We refer the reader to other sources36,37 for a formal discussion of the conditional 

intensity function and its proper interpretation in a Hawkes process. From these we apply 

the following formula for the log-likelihood of events  E = {(ti ,ki )}1≤i≤N  given M  and Φ  

over observation period 0,T[ ] : 

 
 
L(E M ,Φ) = log

i=1

N

∑ λki
(ti )− λk dt

0

T

∫
k=1

D

∑   (2) 

The first sum calculates the log-likelihood of every infection event that did occur, and the 

second sum calculates the log-likelihood that each individual was not infected at all other 

times. 

4.1.1 Contagion of gun violence as a Hawkes process 

 

We model the contagion of gun violence as a Bayesian Hawkes Process by defining the 

following features: each network vertex (i.e. each individual) occupies its own coordinate 

of the Hawkes Process and each gunshot victimization is an event of the process 

occurring on the coordinate that corresponds to the victim (repeated victimizations of the 

same individual correspond to multiple events on the same node, and are treated the same 

as single victimizations). 
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Exogenous intensity. We assume that the exogenous intensity is the same for every 

individual in the network, and attribute the observed fluctuations of violence rates 

(eFigure 3) to a seasonal effect independent of peer contagion. For this reason, we fit a 

time-varying function µ(t)  to the data and use it for the common exogenous intensity 

(described in Section 4.2.1).   

 

Endogenous exciting functions. The exciting function φu,v(t)  models the effect of person 

u on person v after t time has passed since u was infected and captures two common 

assumptions regarding the spread of contagions (eFigure 4). 

 

1. Time: consistent with previous models used to infer the spread of contagions over 

social networks,34,38,39 we assume that the impact of earlier infections on future 

events decays as the time passed since the original infection increases. 

Additionally, influence can only travel forward in time: an infection has no 

impact on those that came before it. As is common for Hawkes processes,34-39 we 

assume an exponential decay and obtain the following formula for the temporal 

component of the exciting functions: 

 fβ (t) = βe−βt if t > 0
0 if t ≤ 0

⎧
⎨
⎪

⎩⎪
  (3) 

 

2. Network structure: epidemiologists commonly assume that contagious events are 

localized and that the transmission probability increases closer to the source.40-43 

In our case, we assume that violence is more likely to spread between people who 
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are closely linked in the network and measure the distance between individuals 

based on network topology. Based on previous studies of violence in social 

networks,12,30 we assume that infections are able to be transmitted across a 

network distance of up to three degrees of separation; people who are further 

away in the network have no effect on one another. Hence, we obtain the 

following formula for the structural component: 

 gα (u,v) = αdist(u,v)−2 if dist(u,v) ≤ 3
0 if dist(u,v) > 3

⎧
⎨
⎪

⎩⎪
  (4) 

 

Finally, we obtain the exciting function by combining the above two components: 

 φu,v(t) = fβ (t)gα (u,v)   (5) 

 

 

4.1.2 Model likelihood 

Using Equation (2) and the model presented in Section 4.1.1, we can now write the log-

likelihood of observed infection events  E = {(ti ,ki )}1≤i≤N . V denotes the set of vertices in the 

network, and 0,T[ ]  marks the study period. 

 

Since some individuals were the victims of fatal gunshots during the study period, they 

were not susceptible to infection during the entire study period. For these victims, the 

second summand of Equation (2) only needs to be integrated until their time of death. 

Denoting by Tv the time of death of vertex v (Tv=T if the individual didn't die during the 

study period), we obtain: 
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L(α ,β,µ E ) = log

i=1

N

∑ λki
(ti )− λv(t)dt

0

Tv

∫
v∈V
∑   (6) 

 

 

4.2 Inferring model parameters 

 

In this section, we describe how we learned the optimal parameters to describe the 

Hawkes model described in Section 4.1. 

 

 

4.2.1 Exogenous intensity 

 

Because the seasonal variations in gunshot rates remain consistent throughout the study 

period (eFigure 3), we assume these are not purely driven by noise or social contagion. 

We model these seasonal variations with a periodic sinusoidal function. 

 

Let M(t) denote the expected number of total victimizations occurring on day t . We 

assume the following form: 

 M (t) = A 1+ ρ sin(ωt +φ)[ ]   (7) 

Because violence fluctuates annually, we know that the period is one year, i.e. 

ω = 2π / 365.24 . We learn the remaining three parameters A,ρ,φ{ }  using non-linear least 

squares estimates with the Gauss-Newton algorithm. This yields: 

 M (t) = 3.73 1+ 0.43sin 2π
365.24

t + 4.36⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

  (8) 
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eFigure 5 depicts the number of infections on each day of the study period along with the 

function M (t) . 

 

Because we do not yet know the importance of the exogenous intensity in spreading 

gunshot violence, we only keep ρ,φ{ }  from the fitted parameters. In other words, we only 

keep the parameters characterizing the seasonal fluctuations; the base amplitude A of the 

exogenous intensity will be inferred together with the kernel function parameters in the 

following section. 

 

Finally, we relate the aggregate number of infections M (t)  to the node-level exogenous 

intensity µ(t) . By definition: 

 M (t) = µ(s)ds
t−1

t

∫
v∈V
∑ = V µ(s)ds

t−1

t

∫   (9) 

where we used that the exogenous intensity is identical across all nodes. Assuming that 

µ(t)  is approximately constant over the course of one day, we get M (t) = V µ(t) . Hence 

we obtain the following form for the exogenous intensity: 

 µ(t) = µ0 1+ 0.43sin
2π

365.24
t + 4.36⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

  (10) 

where µ0 = A / V .  
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4.2.2 Learning the optimal model parameters 

 

Using the exogenous intensity from Section 4.2.1, the log-likelihood now depends on 

three parameters α ,β,µ0{ } . Finding the maximum likelihood estimate of these parameters 

amounts to solving the following optimization problem: 

 
 
argmax

α ,β ,µ0
L α ,β,µ0 E( )   (11) 

 

Unfortunately, the function 
 
L α ,β,µ0 E( )  is not jointly concave in its three arguments. We 

will, however, exploit the following fact. 

 

Proposition 1. The function 
  α ,µ0( )!L α ,β,µ0 E( )  is concave. 

Proof. Expanding the terms in Equation (6), it is clear that the second sum is linear in 

α ,µ0{ } . Hence it is sufficient to show that for 1≤ i ≤ N  : 

 h(α ,µ0 ) = log µ0 1+ 0.43sin
2π

365.24
t + 4.36⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
+ αdist(u,v)−2 fβ (t)

j:t j<ti
∑

⎛

⎝
⎜

⎞

⎠
⎟   (12) 

is concave. For this, we see that the operand of the log function is linear in α ,µ0{ } . By 

composition with the concave function log, we obtain that h is concave and thus conclude 

the proof.  !  

 

We observed numerically that  L  has many local optima; hence we solve Equation (11) 

using the following heuristic: 

1. We perform a brute force grid search to locate good starting points for the refining 

heuristic. 
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2. Starting from the best point obtained during the first step, we refine the solution 

by alternated minimization: 

a. Optimize over α ,µ0{ }  for a fixed value of β . By Proposition 1 we were 

able to use standard convex optimization (gradient descent, in this case) to 

solve this step exactly. 

b. Optimize over β  for a fixed value of α ,µ0{ } , using simulated annealing. 

 

Other heuristics were considered: using gradient descent as well for the optimization over 

β , or using global gradient descent to optimize over α ,β,µ0{ }  at the same time. All 

heuristics led to the same optimal solution, indicating that our initial grid search was 

precise enough to identify good starting points. We obtained the following values of the 

parameters at the optimum: 

 α = 7.82 ×10−3, β = 3.74 ×10−3, µ0 = 1.19 ×10
−5   (13) 

 

 

4.2.3 Validation on simulated data 

 

In order to validate our approach for learning the Hawkes model parameters, we 

evaluated the method described in Section 4.2.2 on synthetic data. Starting from the same 

co-offending network as in the dataset (i.e. the LCC), we generated synthetic contagion 

events by simulating the Hawkes contagion model described in Section 4.1.44 The model 

parameters are fixed to the values obtained in Equation (13). 
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We then computed the maximum likelihood estimator described in Section 4.2 on the 

synthetic contagion events and compared the inferred parameters to the true values used 

during the simulation. To analyze how our estimates converge as we observe more data, 

we truncated the synthetic dataset at increasing time horizons between 0 and 3,000 days 

(our study period spanned 3,012 days) and trained the maximum likelihood estimator 

separately on each truncated dataset.  

 

We performed this procedure five times to generate five independent sets of synthetic 

contagion events (eFigure 6). We observed that the inferred parameters for α  and β  vary 

for short study periods but quickly converged toward the optimal value as the study 

period increases. The learned parameters for µ0  are close to optimal even for short study 

periods. After 3,000 days, all inferences for α  were within 10.8% of the true value, all 

inferences for β  were within 12.7%, and all inferences for µ0  were within 2.1%. The 

mean parameters for each parameter from the five trials at 3,000 days were all within 

1.8% of the optimal value. These results indicate that our parameter inference method 

was able to reliably determine the parameters of a Hawkes model over the study period 

length used. 

 

 

4.3 Inferring the pattern of infections 

 

Given fitted values of the parameters of the Hawkes contagion model, we then 

determined whether each infection event (t,v) was primarily caused by the exogenous 
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background rate or endogenous peer contagion. Using Equation (1), we compared the 

value of the exogenous and endogenous intensities at the time t of infection, and 

attributed the infection event to the larger of the two quantities. In other words, we 

compared: 

 µ(t) = 1.19 ×10−5 1+ 0.43sin 2π
365.24

t + 4.36⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
  (14) 

with 

 φu,v(t)
u≠v
∑   (15) 

and attributed the infection to peer contagion if (15) >(14). 

 

For infection events (t,v) attributed to peer contagion, we could single out a single peer û  

event as the individual most responsible for transmission.  This was achieved by choosing 

the peer û  with the strongest social influence on v at time t. That is,  

 û = argmax
u

φu,v(t)⎡⎣ ⎤⎦   (16) 

 

We thus uncovered the pattern of infections: each infection event is attributed to either 

the exogenous intensity or a single past infection event.  We draw an edge from each 

infection event to all other infections that it spawns. We note that edges are directed 

forward in time, making cycles impossible, meaning that every connected component in 

this infection network is a tree. We referred to each tree in the forest of infections as a 

cascade.  
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Our model identified 7,016 victimizations that were caused primarily by social contagion. 

We found that 46% of infections came from first-degree neighbors, 41% came from 

second-degree neighbors, and the remaining 13% of infections came from third-degree 

neighbors. Victims were shot on average 125 days after their infector, with a median time 

difference of 83 days. 

 

We found 4,107 distinct cascades of victimization through the LCC during the study 

period. The distribution of the cascade sizes extracted from our dataset can be seen in 

eFigure 9. Consistent with previous findings in related domains,45,46 this distribution 

follows a power-law of exponent 1.8.  

 

 

4.3.1 The timing of infections and co-offending 

Previous research suggests that co-offending represents strong and enduring relationships 

between individuals.22 We therefore treated co-offending as evidence of an existing 

relationship between two individuals involved rather than as a point-in-time estimate of 

when that relationship formed, and accordingly generated static edges in the network 

representing that two individuals co-offended together at any time during the study 

period. Nonetheless, it is useful to evaluate the temporal relationship between when an 

individual is infected by an associate compared to when the two first co-offended 

together, to ensure that the typical timing of these two events supports this modeling 

decision. We considered all contagion events (as inferred in Section 4.3) between first-

degree neighbors and found that 77.1% of all infected individuals had been co-arrested 
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with their infector before being shot (eFigure 8). Many of these infections occur in the 

immediate aftermath of being arrested with a recent victim. Another 10.8% of victims 

were shot in the year immediately preceding their first co-arrest with the infector. These 

results indicate that, even discounting prior research studying the close ties that generally 

exist between people before co-offending, our findings of contagion are not merely 

artifacts of the static network.  

 

 

4.4 Causality in the Hawkes model 

 

The notion of causality has been the subject of many debates.47 With this in mind, we 

should qualify the previous section in which we assign a single cause to certain gunshot 

victimizations. 

 

In discussing the definition of causality, Ned Hall proposed the following thought 

experiment:48 

 

Suzy and Billy, two friends, both throw rocks at a bottle. Suzy is quicker, and 

consequently it is her rock, and not Billy’s, that breaks the bottle. But Billy, 

though not as fast, is just as accurate: Had Suzy not thrown, or had her rock 

somehow been interrupted mid-flight, Billy’s rock would have broken the bottle 

moments later. 
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According to some interpretations of causality, within this scenario Suzy and Billy are 

jointly responsible for the bottle breaking: they were both throwing rocks at it, and the 

fact that Suzy's rock reached the bottle first is coincidental. However, it also clear that 

Suzy’s rock shattered the bottle. Even if we had not observed the rock that first hit the 

bottle, since Suzy was throwing rocks more quickly than Billy we could say that the rock 

that shattered the bottle was more likely to have been thrown by Suzy. 

 

The Hawkes contagion model can be re-interpreted in light of this example: as they 

become infected, victims begin to “throw rocks” at their associates with a frequency that 

decreases over time. Being shot due to peer infection is equivalent, in this metaphor, to 

being hit by a rock thrown by an associate. Since we do not observe whose rock hits first, 

the only thing we can say for certain is that at the time of victimization an individual was 

subject to the combined throws of his or her previously-infected neighbors. This 

combined effect is expressed mathematically by the sum in Equation (1).  

 

It is now clear which interpretation to give the cascades extracted in Section 4.3: it is a 

simplification where we designate the cause for victimization to be the associate who was 

“throwing rocks” with the highest frequency at the time of infection. This simplification 

is acceptable in that this associate is the most likely to be the direct cause of infection. 

Nonetheless, based on another interpretation of causality we would instead consider the 

throws from every associate to be jointly the cause of victimization. 

 

  

Downloaded From: http://jamanetwork.com/ on 01/03/2017



©	2017	American	Medical	Association.	All	rights	reserved.	
	

5. Predicting victimization 

 

If gunshot injuries in the network are caused by social contagion, then how much can 

knowledge of the co-offending network improve our ability to predict future individual 

victimization? Traditional models of individual victimization tend to rely on individual, 

contextual, or ecological risk factors,49 yet our findings suggest that adding in additional 

temporal and network features might improve such prediction.  

 

In this section we compare the Hawkes contagion model with a traditional demographics 

model by evaluating how effectively each model predicts who will be shot on a given 

day. 

 

Given that law enforcement and social services must make targeted interventions with 

limited resources, predictions of gunshot victims are only actionable if they precisely 

identify a small population that faces the highest risk to be shot. With this in mind, the 

proper evaluation for any model is its ability to identify future victims as part of the 

population’s highest-risk community.49,50 For this study, we define three “high-risk 

communities” as those people identified with the top 0.1%, 0.5%, and 1.0% of risk to 

become infected. These correspond to populations with 138, 691, and 1,382 individuals 

from the largest connected component, respectively.  

 

We compared the predictive abilities of three different models:  
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Demographics model: This model uses each person’s demographic features and 

risk factors to predict who will be infected on a given day. We include all features 

available in our data, capturing many of the variables shown to be most critical in 

predicting gunshot victimization.31 We label as infected all people who have been 

shot before that date and label all others as non-infected. We then perform a 

logistic regression over the entire population, using the formula 

victim ~ sex + race + age + gang.member + gang.name + N.prior.arrests + 

neighborhood  

(while additional features would surely have been useful, we unfortunately did not 

have access to any variables beyond these). The resulting probabilities correspond 

to the background rate of the Hawkes contagion model and identify each person’s 

risk to be shot. 

 

Contagion model: This model uses the social contagion element of the Hawkes 

model to identify who is at most risk to become infected on a given day. It 

accounts for the network structure and infection history, but ignores all 

demographic and environmental attributes. Based on the observed pattern of 

gunshots, we measure each person’s exposure to violence at a given time.  

 

Combined model: This model uses the results from the demographics and 

network models. We combine the risk scores from the other two models using a 
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weighted sum, generating a fully specified Hawkes contagion model for the 

spread of gunshot violence through the co-offending network. 

 

For every day of the study period, we executed all three models to predict each person’s 

likelihood to be shot on that day. We then identified (based on the data) the people who 

were actually shot on the current day of the trial and noted their relative risk in the 

population of co-offenders according to each model. For each model, we ended up with 

the rankings of all the victims on the day they were shot. We compared the different 

models by measuring how often they select victims when identifying the network’s high-

risk population. An ideal model would identify each day’s N victims as the individuals 

with the N highest levels of risk. 

 

eFigure 10 plots the cumulative distribution function for each model. The contagion 

model outperformed the demographics model for the high-risk quarter of the population 

(identifying more than half of the victims in this group), while the demographics model 

outperformed the contagion model for the rest of the population. The combined model 

reaped the benefits of both models, and performs best across the entire distribution. This 

shows that the contagion model is best equipped to predict future victims when focused 

on the portion of the population that faces the highest risk. Given that the goal of 

predicting victims is to provide law enforcement and social services with a small 

population for targeted interventions, the contagion and combined models are more 

effective than the traditional demographic model. 
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eFigure 1. Index Crime in Chicago (Rate per 100,000), 1965 to 2013 

 
Index crimes include all murders, criminal sexual assaults, aggravated assaults/batteries, 
burglaries, thefts, robberies, arsons, and motor vehicle thefts. Crime rose throughout the 
1970s and 1980s, peaking in 1991 with a rate of 10,647.9 per 100,000 people. Crime in 
Chicago has since declined steadily, with a rate of 4251.2 per 100,000 in 2013. Data 
come from the FBI Unified Crime Reports.8 
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eFigure 2. Homicide in Chicago (Rate per 100,000), 1965 to 2013 

 
Homicide rates between 1965 and 2013 follow a similar pattern as index crime rates, 
peaking in the early 1990s (with a rate of 31.8 per 100,000 in 1992) and declining 
steadily since then. The homicide rate in 2013 was 14.1 per 100,000 people, the lowest 
since 1966. Homicide data from 1965 to 1994 were provided by Carolyn Rebecca Block 
and Richard L. Block through the National Archive of Criminal Justice Data.51 Detailed 
data on homicides from 1995 to 2010 were provided by the Chicago Police Department. 
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eFigure 3. Monthly Counts of Fatal and Nonfatal Gunshot Injuries in Chicago, 2006 to 
2014 

 
The number of shootings per month varies widely depending on the time of year: 
violence peaks in the summer and declines in the winter. In 2008, for example, the 
number of shootings per month varied from 74 in February to 277 in August. 
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eFigure 4. Hawkes Model Dynamics Over an Example Network 

 
(A) A table of identities and whether each individual was a gunshot victim. The infection 
time for each victim is also recorded.  
(B) The co-offending network of individuals in (A), with victims marked in red and non-
victims in blue.  
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(C) The infection rates of each person in the network over a five-day period. Each 
individual is initially susceptible to infection only due to a small background rate, based 
on exogenous features, that is constant across the population. When individual A is 
infected on day 2 (marked with a red line), it causes a spike in the infection rate of its 
three neighbors: B, D, and E. The impact of this infection decays over time. Because a 
node cannot generate further infections in itself, A’s infection rate does not change when 
it is infected. Node D is infected on day 4 (marked with another red line), causing the 
infection rates of A, B, and C to spike. Because the effects of peer contagion are additive 
and B is connected to both infected nodes, B has the highest infection rate after D is 
infected.  
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eFigure 5. Shootings per Day and Best-Fit Curve During the Study Period 

 
Each blue dot represents the number of shootings (fatal and non-fatal) on a single day. 
Values ranged from 0 (N=280, 9.3%) to 16 (N=1), with a mean of 3.7 and median of 3. In 
order to model how violence rates vary over time, we fit a sinusoidal curve to this data (in 
green). 
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eFigure 6. Learned Parameters Relative to Optimal From Five Simulations of the 
Hawkes Contagion Process 

 
We simulated five Hawkes contagion processes over the LCC using the parameters found 
in Equation (13). Using the method in Section 4.2, we learned the parameters that best 
describe the simulated data and compare these to the actual value. The dashed black lines 
indicate that the optimal result is for the learned parameters to be identical to the 
parameters actually used. Colored lines show the learned parameters relative to optimal 
for each simulated dataset as we observe a different number of days. We observe that the 
inferred parameters for α  and β  vary notably for short study periods but quickly 
converge toward the optimal value as the study period increases. The learned parameters 
for µ0  are close to optimal even for short study periods. The means of the learned 
parameters from the five trials at 3,000 days are all within 2% of the optimal value, 
indicating that our parameter inference method is able to determine the parameters of a 
Hawkes model over the actual study period. 
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eFigure 7. Results From 10,000 Monte Carlo Simulations of the Study Period Without 
Any Social Contagion 

 
These plots display the temporal relationships between infections for all pairs of first-
degree neighbors where both people were gunshot victims during the study period. 
Vertical red lines represent the observed values from the data. Simulations based on 
homophily underestimate by a large margin how many pairs will be infected close 
together in time, and can explain only 52.6% of infections that occur within 30 days of 
each other. The mean time between infections is 60 days shorter in the data than in the 
simulations. 
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eFigure 8. Temporal Difference Between Co-Offending and Gunshot Infection 

 
The values here indicate the number of days between co-offending and being victimized, 
among cases where our model determined that a victim was infected by a first-degree 
neighbor. Positive values indicate that the victim was infected after having previously co-
offending with the infector. As is clear from the figure, the majority of infections (77.1%) 
that we detected between first-degree neighbors occurred after the infector and victim had 
already been arrested together. Among the victims who were shot before co-offending 
with their infector, 47.5% co-offended with the infector within a year of being infected. 
These results, combined with previous research on the enduring nature of co-offending 
relationships,22 confirm the validity of modeling the contagion process over a static 
network. 
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eFigure 9. Distribution of Cascade Sizes Found in the Network 

 
Cascade sizes ranged from 1 (N=3,427, 83.4%) to 469 (N=1), with a mean size of 2.7 
people. The distribution follows a power law with scaling exponent 1.8. 
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eFigure 10. Cumulative Distribution Function for the Demographics, Contagion, and 
Combined Prediction Models 

 
The x-axis represents a population size and the y-axis reports what fraction of victims 
was within the high-risk population of that size. Among the highest-risk 20,000 people, 
for example, the demographics model identifies 39.9% of victims, the contagion model 
identifies 41.3%, and the combined model identifies 43.9%. Overall, the contagion model 
outperforms the demographics model for high-risk quarter of the population (identifying 
more than half of the victims in this group), while the demographics model outperforms 
the contagion model for the rest of the population. The combined model reaps the 
benefits of both models, and performs best across the entire distribution. 
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