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1 Introduction

For a formal introduction to the pipage rounding
framework, refer to the reading notes from [2]. In
these notes, we are only going to focus on refor-
mulating section 2 of [1] as the more commonly
studied max cover problem.

The proof of the pipage rounding algorithm
are a little more efficient here than in [2]. Indeed,
we show that the number of integral variables of
the fractional vector we wish to make integral
increases by at least 1 at every iteration, rather
than every n iteration, where n is the number of
elements in the universe set N . We also show
a better finite-sample approximation ratio than
(1−1/e), which was obtained in the general case
for matroid constraints.

Since we know max cover can be solved
within 1− (1−p)p, where p is the number of sets
we are allowed to take, does pipage rounding im-
prove the approximation factor? Maybe. In fact,
we will show that pipage rounding gets us within
1−(1−k)k of the optimum, where k is the largest
number of sets any item in N is covered by. Both
converge to the magical (1− 1/e)-factor, but de-
pending on the nature of the problem, pipage
rounding can improve on the greedy algorithm.
For example, in the case where no item in N
is covered by more than 2 sets, pipage rounding
achieves a 3/4-approximation ratio, whereas this
is only the case when we are allowed to pick two
sets for the greedy algorithm.

2 Formulation

We want to maximize a coverage function. There
is a set of N items in the universe, and a series
of sets S on N . Our objective is to choose p sets,
such that the sum of the weights of the elements
covered is maximized. This can be expressed in
the following integer program where zj is the in-
dicator variable for the jth element being cov-
ered, wj is the weight of that element, and xi is
the indicator variable for the ith set being picked.

max

m∑
j=1

wjzj

∀j,
∑
i:j∈Si

xi ≥ zj (1)

∑
i

xi = p (2)

∀i, xi ∈ {0, 1} (3)

∀j, 0 ≤ zj ≤ 1 (4)

We can define the function

F (x) :=
m∑
j=1

wj

1−
∏

i:j∈Si

(1− xi)


and reformulate this LP as:

max F (x)∑
i

xi = p (5)

∀i, xi ∈ {0, 1} (6)
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By relaxing (6) to y ∈ [0, 1], the function
F defined above is exactly the multilinear relax-
ation of f . We are going to define a particular
extension to f :

f̃(x) =
m∑
j=1

wj min{1,
∑
i:j∈Si

xi}

3 Algorithm

The general framework of pipage rounding is the
same:

• Find ỹ which maximises f̃ under the re-
laxed max cover constraints.

• Transform ỹ into an integral vector ŷ, such
that F (ŷ) ≥ F (ỹ)

We will show that we have this series of in-
equalities:

f(ŷ) = F (ŷ) ≥ F (ỹ)

≥ (1− 1/e)f̃(ỹ) ≥ (1− 1/e)OPT

The algorithm is very similar to before. Sup-
pose that we are given a fractional vector ỹ,
which optimizes f̃ under (5) and a relaxed (6). y
cannot have exactly one fractional variable, oth-
erwise (5) would not be matched exactly. If y
is not integral, then we can find two coordinates
ỹi and ỹj which are fractional. Note that ex-
changing mass from one to the other, as long as
we verify 0 ≤ ỹi ≤ 1 and 0 ≤ ỹj ≤ 1 (which
are not matched exactly), does not violate any
constraint. Let ε+ > 0 (resp. ε− < 0) be the
exchange of mass which makes ỹj integral, (resp
ỹi) integral.

Since F is the multilinear relaxation of f , it
is cross-convex, and φ : t 7→ F (ỹ + t(ei − ej))
reaches its maximum at one of the two endpoints
of segment [ε−, ε+]. If φ(ε+) > φ(ε−), we let
ỹ ← ỹ + ε+(ei − ej), and vice-versa otherwise.
We repeat the process until ỹ has no more frac-
tional variables. We let ŷ be the output of this

pipage rounding procedure. At every itera-
tion, we gain an additional integral variable. At
the end of at most n iterations, we have integral
vector ŷ such that F (ŷ) > F (ỹ)

4 Theoretical Guarantees

Let k := maxj |S : j ∈ S| be the largest number
of sets an item in N is covered by. We are now
going to prove that:

∀y ∈ [0, 1]N , F (y) ≥ (1− (1− k)k)f̃(y)

From the arithmetic-geometric inequality,

k

√√√√ k∏
i=1

(1− yi) ≤
1

k

k∑
i=1

(1− yi)

= 1−
k∑

i=1

yi
k

(7)

It follows that:

1−
k∏

i=1

(1− yi) ≥ 1−

(
1−

∑k
i=1 yi
k

)k

Let z := min(1,
∑k

i=1 yi). Since φ : z 7→
1 −

(
1− z

k

)k
is monotone increasing, we have

that:

1−
k∏

i=1

(1− yi) ≥ 1−
(

1− z

k

)k
Note that φ is concave on the segment [0, 1],

that φ(0) = 0 and φ(1) = 1 − (1 − 1/k)k. We
finally obtain:

g(z) ≥
(

1− (1− 1/k)k
)
· z

which implies that:

1−
k∏

i=1

(1− yi) ≥
(

1− (1− 1

k
)k
)

min(1,

k∑
i=1

yi)

and therefore that: F (y) ≥ (1− (1/k)k)f(y)
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5 Lower Bound

We now demonstrate the integrality gap can be
arbitrarily close to 1 − (1 − 1/k)k). Set n = kp,
∀j, wj = 1. Suppose there are n sets and

(
n
k

)
items in N , such that each item is covered by
exactly k sets of the same size k

n

(
n
k

)
. In other

words, you can think of a bipartite graph, where
one side (items) corresponds to all the subsets
of size k of the other side (sets). By symme-
try, choosing any p sets amongst the n covers(
n
k

)
−
(
n−p
k

)
items. Choosing every set with frac-

tion 1/k covers all items with probability 1, i.e.(
n
k

)
items. This does not violate any constraint

since n/k = p. Standard algebraic manipula-
tions show that:

(
n
k

)
−
(
n−p
k

)(
n
k

) ≤ 1−
(

1− 1

k
− k + 1

n

)k

→n→+∞ 1− (1− 1

k
)k (8)
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