1 Introduction

For a formal introduction to the pipage rounding framework, refer to the reading notes from [2]. In these notes, we are only going to focus on reformulating section 2 of [1] as the more commonly studied max cover problem.

The proof of the pipage rounding algorithm are a little more efficient here than in [2]. Indeed, we show that the number of integral variables of the fractional vector we wish to make integral increases by at least 1 at every iteration, rather than every n iteration, where n is the number of elements in the universe set N. We also show a better finite-sample approximation ratio than $(1 - 1/e)$, which was obtained in the general case for matroid constraints.

Since we know max cover can be solved within $1 - (1 - p)^p$, where p is the number of sets we are allowed to take, does pipage rounding improve the approximation factor? Maybe. In fact, we will show that pipage rounding gets us within $1 - (1 - k)^k$ of the optimum, where k is the largest number of sets any item in N is covered by. Both converge to the magical $(1 - 1/e)$-factor, but depending on the nature of the problem, pipage rounding can improve on the greedy algorithm. For example, in the case where no item in N is covered by more than 2 sets, pipage rounding achieves a $3/4$-approximation ratio, whereas this is only the case when we are allowed to pick two sets for the greedy algorithm.

2 Formulation

We want to maximize a coverage function. There is a set of N items in the universe, and a series of sets S on N. Our objective is to choose p sets, such that the sum of the weights of the elements covered is maximized. This can be expressed in the following integer program where z_j is the indicator variable for the j^{th} element being covered, w_j is the weight of that element, and x_i is the indicator variable for the i^{th} set being picked.

\[
\begin{align*}
\text{max} & \quad \sum_{j=1}^{m} w_j z_j \\
\text{s.t.} & \quad \forall j, \sum_{i: j \in S_i} x_i \geq z_j \quad (1) \\
& \quad \sum_{i} x_i = p \quad (2) \\
& \quad \forall i, x_i \in \{0, 1\} \quad (3) \\
& \quad \forall j, 0 \leq z_j \leq 1 \quad (4)
\end{align*}
\]

We can define the function

\[
F(x) := \sum_{j=1}^{m} w_j \left(1 - \prod_{i: j \in S_i} (1 - x_i)\right)
\]

and reformulate this LP as:

\[
\begin{align*}
\text{max} & \quad F(x) \\
\text{s.t.} & \quad \sum_{i} x_i = p \quad (5) \\
& \quad \forall i, x_i \in \{0, 1\} \quad (6)
\end{align*}
\]
By relaxing (6) to \(y \in [0, 1] \), the function \(F \) defined above is exactly the multilinear relaxation of \(f \). We are going to define a particular extension to \(f \):

\[
\tilde{f}(x) = \sum_{j=1}^{m} w_j \min\{1, \sum_{i:j \in S_i} x_i\}
\]

3 Algorithm

The general framework of pipage rounding is the same:

- Find \(\hat{y} \) which maximises \(\tilde{f} \) under the relaxed max cover constraints.
- Transform \(\hat{y} \) into an integral vector \(\hat{y} \), such that \(F(\hat{y}) \geq F(\tilde{f}) \)

We will show that we have this series of inequalities:

\[
f(\hat{y}) = F(\hat{y}) \geq F(\tilde{f}) \geq (1 - 1/e)F(\tilde{f}) \geq (1 - 1/e)OPT
\]

The algorithm is very similar to before. Suppose that we are given a fractional vector \(y \), which optimizes \(\tilde{f} \) under (5) and a relaxed (6). \(y \) cannot have exactly one fractional variable, otherwise (5) would not be matched exactly. If \(y \) is not integral, then we can find two coordinates \(i \) and \(j \), which are fractional. Note that exchanging mass from one to the other, as long as we verify \(0 \leq y_i \leq 1 \) and \(0 \leq y_j \leq 1 \) (which are not matched exactly), does not violate any constraint. Let \(\epsilon^+ > 0 \) (resp. \(\epsilon^- < 0 \)) be the exchange of mass which makes \(y_j \) integral, (resp \(y_i \) integral).

Since \(F \) is the multilinear relaxation of \(f \), it is cross-convex, and \(\phi : t \mapsto F(\hat{y} + t(e_i - e_j)) \) reaches its maximum at one of the two endpoints of segment \([\epsilon^-, \epsilon^+]\). If \(\phi(\epsilon^+) > \phi(\epsilon^-) \), we let \(\tilde{y} \leftarrow \tilde{y} + \epsilon^+(e_i - e_j) \), and vice-versa otherwise. We repeat the process until \(\tilde{y} \) has no more fractional variables. We let \(\hat{y} \) be the output of this pipage rounding procedure. At every iteration, we gain an additional integral variable. At the end of at most \(n \) iterations, we have integral vector \(\hat{y} \) such that \(F(\hat{y}) > F(\tilde{f}) \)

4 Theoretical Guarantees

Let \(k := \max_j |S : j \in S| \) be the largest number of sets an item in \(N \) is covered by. We are now going to prove that:

\[\forall y \in [0, 1]^N, F(y) \geq (1 - (1-k)^k)\tilde{f}(y)\]

From the arithmetic-geometric inequality,

\[
\sqrt[\prod_{i=1}^{k}(1 - y_i)} \leq \frac{1}{k} \sum_{i=1}^{k}(1 - y_i)
\]

which implies that:

\[
1 - \prod_{i=1}^{k}(1 - y_i) \geq 1 - \left(1 - \frac{\sum_{i=1}^{k} y_i}{k}\right)^k
\]

Let \(z := \min(1, \sum_{i=1}^{k} y_i) \). Since \(\phi : z \mapsto 1 - (1 - \frac{z}{k})^k \) is monotone increasing, we have that:

\[
1 - \prod_{i=1}^{k}(1 - y_i) \geq 1 - \left(1 - \frac{z}{k}\right)^k
\]

Note that \(\phi \) is concave on the segment \([0, 1]\), that \(\phi(0) = 0 \) and \(\phi(1) = 1 - (1 - 1/k)^k \). We finally obtain:

\[
g(z) \geq \left(1 - (1 - 1/k)^k\right) \cdot z
\]

which implies that:

\[
1 - \prod_{i=1}^{k}(1 - y_i) \geq \left(1 - (1 - \frac{1}{k})^k\right) \min(1, \sum_{i=1}^{k} y_i)
\]

and therefore that: \(F(y) \geq (1 - (1/k)^k)\tilde{f}(y) \)
5 Lower Bound

We now demonstrate the integrality gap can be arbitrarily close to $1 - (1 - 1/k)^k$). Set $n = kp$, $\forall j, w_j = 1$. Suppose there are n sets and $\binom{n}{k}$ items in N, such that each item is covered by exactly k sets of the same size $\binom{k}{n}$. In other words, you can think of a bipartite graph, where one side (items) corresponds to all the subsets of size k of the other side (sets). By symmetry, choosing any p sets amongst the n covers $\binom{n}{k} - \binom{n-p}{k}$ items. Choosing every set with fraction $1/k$ covers all items with probability 1, i.e. $\binom{n}{k}$ items. This does not violate any constraint since $n/k = p$. Standard algebraic manipulations show that:

$$\frac{\binom{n}{k} - \binom{n-p}{k}}{\binom{n}{k}} \leq 1 - \left(1 - \frac{1}{k} - \frac{k + 1}{n}\right)^k$$

$$\rightarrow_{n\rightarrow+\infty} 1 - (1 - \frac{1}{k})^k$$ (8)

References
