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1 Notation

Let N be a ground set of n elements and let
f be a non-decreasing submodular set function
f : 2N → R+. Let M be a matroid. We recall
the definition of a matroid below:

Definition 1. A matroid M is a pair (N, I),
where N is a ground set and I is a family of
subsets of N , called the independent sets of the
matroid, such that:

• I 6= ∅ (generally, we suppose ∅ ∈ I)

• A ∈ B and B ∈ I =⇒ A ∈ I

• ∀(A,B) ∈ I2, |A| < |B| =⇒ ∃c ∈ B :
A ∪ {c} ∈ I

When it is not ambiguous, we will use A ∈ I
and A ∈ M indiscrimanately. For a vector
y ∈ [0, 1]N , we define y(S) :=

∑
i∈S yi. We define

the polytope of a matroid M as:

P (M) :=
{
y ∈ [0, 1]N : y(S) ≤ rM (S) ∀S ⊆ N

}
We define a tight set with respect to y as any
set such that y(A) = rM (A). Finally, the base
polytope B(M) is defined as:

B(M) :=
{
y ∈ [0, 1]N : y(N) = rM (N)

}
To have some geometric interpretation in

mind, the vertices of P (M) are the independent
sets of M and the vertices of B(M) are the bases
of M . Note that it is easy to optimize linear
functions over P (M). In fact, for weight func-
tions, the greedy algorithm is optimal. We are

going to need two properties of tight sets and
optimization on matroid polytopes. Since these
properties are not proved in [2], we prove them
below.

Proposition 1. If A and B are tight sets with
respect to y, A∪B and A∩B are tight sets with
respect to y.

Proof. Suppose that A and B are tight with re-
spect to y:

y(A ∪B) + y(A ∩B) = y(A) + y(B)

= rM (A) + rM (B)

≥ rM (A ∪B) + rM (A ∩B)

The final inequality is by submodularity of the
matroid rank function. Observing that

y(A∪B) + y(A∩B) ≤ rM (A∪B) + rM (A∩B)

completes the proof.

Proposition 2. If f̃ is non-decreasing,
then there exists an optimum solution y∗ to

max
{
f̃(y) : y ∈ P (M)

}
such that N is tight

with respect to y∗.

Proof. Suppose that N is not tight w.r.t. y∗.
Suppose that there is a variable yj which be-
longs to no tight set with respect to y∗, then
we can increase y∗ along this coordinate until
we reach a tightness constraint and still remain
at optimum, since f̃ is non-decreasing. Suppose
no such variable exist, then the set of tight sets
covers all variables, and therefore, their union is
equal to N . From the previous proposition, N is
also tight.
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2 Framework

Our objective is to maximize f(S) for S ∈ I:

max
S∈M

f(S)

Suppose we are given a monotone function F
defined on the polytope P (M), which coin-
cides with f on vectors y ∈ {0, 1}N such that
∀(i, j), t 7→ F (y+ t(ei− ej)) is convex (F is said
to be cross-convex). Then it can be shown that
any fractional vector y can be rounded to an in-
tegral solution ŷ in polynomial time such that
F (ŷ) ≥ F (y). This is known as pipage round-
ing. We will show that for any submodular
function, there is a canonical relaxation, known
as the multilinear relaxation, which verifies
these properties.

However, the multilinear relaxation is not
necessarily optimizable. We are therefore go-
ing to construct extensions of f , f̃ on the ma-
troid polytope P (M), which are monotone, co-
incide with f if y ∈ {0, 1}N , can be optimized in
polynomial time, and such that ∃α,∀y, F (y) ≥
αf̃(y). The general framework is then:

1. Optimize function f̃ on the matroid poly-
tope P (M) which outputs fractional solu-
tion ỹ ∈ P (M)

2. Round ỹ using pipage rounding and out-
put integral solution ŷ ∈ M such that
F (ŷ) ≥ F (ỹ)

3. Output ŷ. We have f(ŷ) = F (ŷ) ≥ F (ỹ) ≥
αf̃(ỹ) ≥ αf(y∗) = αOPT , where y∗ is the
optimal solution to maxy∈M f .

3 Pipage Rounding

Observe that any tight set cannot contain ex-
actly one non-integral variables because the rank
constraints are integral. Let yi and yj be two
fractional variables. Let yti,j : t 7→ y + t(ei − ej).
If a set contains both yi and yj , then for any
value of t, its constraint is not violated. If a set

contains only yi (or yj), then its constraint can-
not be matched exactly. We can therefore define
ε+ > 0 (resp. ε− < 0) to be the greatest (resp.
smallest) value that can be added to y with-
out violating any constraints. Note that both
y+i,j := y + ε+(ei − ej) and y−i,j := y + ε−(ei − ej)
are in the matroid polytope.

In such a way, as long as y is fractional, we
can find two fractional variables and exchange
mass from one to the other without decreasing
the value for F . Unlike the [1] paper, we are not
guaranteed to make one of the (i, j) integral at
the end of a single iteration. However, we show
that after n iterations, we are guaranteed to gain
at least one integral variable.

Data: Fractional y
while y is not integral do

Let A be minimal tight set containing
fractional (i, j) ∈ A if
F (Y +

i,j) ≥ F (Y −i,j) then

y ← y+i,j
else

y ← y−i,j
end

end
Result: Output y, f(y)

Finding a minimal tight set The algorithm
requires us to find a minimal tight set. This can
in fact be done in polynomial time. We sup-
posed “wlog” that N is a tight set for y∗. At
every iteration, we can remove an element from
the current set, starting at N , until we are no
longer tight.

Proving that in n2 iterations, y is integral
At iteration h, let Ah be the minimal tight set
chosen. The main idea is to prove that at every
iteration, one of two things happen:

1. |Ah+1| < |Ah|

2. yh+1 has one more integral variable than
yh
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Proof. (sketch) The author’s provide a proof for
a slightly modified algorithm, and state that the
proof is also true in the original case. The mod-
ification is the following: Ah is not only a min-
imal tight set, but it is a minimal tight set of
miminum cardinality among such minimal sets.

Suppose that you do not get one more inte-
gral variable at iteration h+ 1, then there is an-
other tight set B which stopped us from increas-
ing |ε| enough to gain an extra integral variable.
B can only contain one of the two variables, oth-
erwise it could not have become tight as we ex-
changed mass. Therefore |Ah ∩B| < |Ah|. Since
Ah and B are tight sets, then Ah∩B is also tight
and |Ah+1| < |Ah|.

It follows that yn+h−1 has at least one more
integral variable than yh (since |Ah| ≤ n) and
that pipage rounding runs in at most O(n2) it-
erations.

4 Relaxing f

Multilinear Extension For any submodular
function f , there is a canonical extension which
is cross-convex, defined as such

F (y) := Eŷ∼yf(ŷ)

where ŷ ∼ y is chosen by independently
rounding up y′s value with probability yi and
rounding down with probability 1−yi. It is easy
to see that ∀y ∈ {0, 1}N , F (y) = f(y). It is also
easy to see that if f is monotone, then F is also
monotone.

Proposition 3. F is cross-convex: t 7→ F (y +
t(ei − ej)) is convex on its domain.

Proof. Let (i, j) ∈ N2 and let py(S) be the prob-
ability that S is the set obtained by randomized
rounding on N\i, j.

F (y) =
∑

S⊆N\{i,j}

py(S)[(1− yi)(1− yj)f(S)

+ (1− yi)yjf(S + j)

+ yi(1− yj)f(S + j)

+ yiyjf(S + i+ j)]

t 7→ F (y+ t(ei− ej)) is a degree two polynomial
with leading coefficient −f(S)+f(S+j)+f(S+
i)− f(S + i+ j) ≥ 0 by submodularity.

We are now going to consider several inter-
esting extensions of f , which in certain cases, can
be shown to be optimizable in polynomial time
and can be proven to verify F (y) ≥

(
1− 1

e

)
f̃(y).

[Open Question]. The constant-factor approx-
imation only needs to be verified at the optimal y
in P (M) for f̃ . Can we show that if it is verified
for the optimal y, then under certain properties
of f̃ , it is verified for all y?

Extension f+

f+(y) = max
{ ∑
S⊆N

αSf(S) :
∑
S

αS ≤ 1,

αS ≥ 0, ∀j,
∑
S:j∈S

αS ≤ yj
}

Let us provide a small interpretation of this
function. Notice that it is an LP. However, in the
general case, it cannot be optimized in polyno-
mial time since it has exponentially many vari-
ables. For this function, instead of picking items
independently with probability yj (as we did in
F ), we pick sets. We can therefore think of f+

as a correlated distribution for y, whereas F is
an independent distribution.

[Open Question]. What is the dual of f+? The
dual of f+ will have exponentially many con-
straints, but there are cases where we can still
optimize such an LP. Can the dual of f+ be op-
timized in polynomial time?

Extension f∗

f∗(y) = min

f(S) +
∑
j∈N

fS(j)yj : S ⊆ N


This extension is easy to analyse. Note that

here we are minimizing! Consider a binary vec-
tor y ∈ {0, 1}N . If yj = 1, then by not including
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element j in S, you pay fS(j) and fS(j′) for any
other element j′, which would be more than if
you included j in S. If yj = 0, then if you in-
clude element j in S, you increase the value of
f(S), whereas if you do not, you pay no addi-
tional penalty. It is easy to see then that for any
integral vector y, f∗(y) = f(S) where y = 1S

[Open Question]. We can think of f∗ to be
a first-order extension of f . What does exten-
sion mean? What would a second-order exten-
sion look like?

Lemma 1. If f is monotone submodular:

F (y) ≤ f+(y) ≤ f∗(y)

Proof. f+(y) ≥ F (y) since taking αS equal to
the probability of obtaining set S by random-
ized rounding of y is a feasible vector for f+. To
see that f∗(y) ≥ f+(y), observe that for any set
T ⊆ S and any feasible vector αS :

∑
S

αSf(S) ≤
∑
S

αs

f(T ) +
∑
j∈S

fT (j)


≤f(T ) +

∑
j∈N

yjfT (j)

Lemma 2. For any monotone submodular f ,
F (y) ≥

(
1− 1

e

)
f∗(y)

Proof. The general idea of the proof is to build a
set S(t) incrementally and randomly, such that
(1− 1

e )f∗(y) ≤ E(f(S(1))) ≤ F (y).

How do we construct the set S(t)? For each
element, include it in S(t) with an independent
poisson clock Cj of parameter yj . In other words,
as soon as the poisson clock Cj “rings” for ele-
ment j, include it in S(t) and for all future time
steps.

Recall that the probability that

P (C(t+ dt)− C(t) = k) =
e−λdt(λdt)k

k!

Note that the probability we include an element
j in S(1):

P(yj ∈ S(1)) = 1− e−yj ≤ yj
=⇒ E(f(S(1))) ≤ F (y)

We can now write the following differential equa-
tion from the independence of the poisson clocks
and “memoryless-ness” of a poisson process.

E(f(S(t+ dt))− f(S(t))|S(t) = S)

=
∑
j∈N

fS(j)yjdt

≥ (f∗(y)− f(S))dt

The first equality is obtained by observing that,
conditioned on S(t), the marginal increase to
f(S(t)) for very small dt is the sum of the dis-
joint event that clock Cj “rings” between t and
t + dt. It is easy to see that this probability is
yjdt, by observing the expression of the poisson
process. The second inequality is the fundamen-
tal lemma which holds for submodular functions.
Dividing by dt on both sides, and by taking the
expectation with respect to S(t), we get the fol-
lowing differential equation from the property of
iterated expectations:

1

dt

(
E(f(S(t+ dt)))−f(S(t))

)
≥ f∗(y)− E(f(S(t)))

Solving the differential equation in φ : t 7→
E(f(S(t))) : φ′(t) + φ(t) ≥ f∗(y) we get φ(t) ≥
(1−e−t)f∗(y), which concludes the proof by tak-
ing t = 1.

5 Weighted Rank Functions

Note that in general f∗ and f+ cannot be op-
timized in polynomial time. In [2], the au-
thors cover a special case of submodular func-
tions for which f+ is optimizable in polynomial
time: sums of weighted rank functions.
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We simply the presentation of the paper by
considering a single matroid rank function, the
extension is straight-forward. Let

g(S) := max{w(I) : I ⊂ S, I ∈ X}

where X are the independent sets of a matroid.

f+(y) = max
{ ∑
S⊆N

αSg(S) :
∑
S

αS ≤ 1,

αS ≥ 0,∀j,
∑
S:j∈S

αS ≤ yj
}

= max
{∑
I∈X

αI
∑
j∈I

wj :
∑
I∈X

αS ≤ 1,

αS ≥ 0,∀j,
∑

I∈X:j∈I
αS ≤ yj

}
by assuming without loss of generality that

αS is nonzero only for S ∈ X. Indeed, any S
can be substituted for the value of the maximal
independent set of S in X without changing the
value of g(S).

We can inverse the summation:∑
I∈X

αI
∑
j∈I

wj =
∑
j∈N

∑
I∈X:j∈I

wjαI

Let xj =
∑

I∈X:j∈I αI . Notice that xj ∈
P (X), and that any vector of P (X) can be writ-
ten in this way. Indeed,

∑
I∈X αI = 1. The

optimisation problem becomes:

g+(y) = max
{∑
j∈N

wjxj : x ∈ P (X), ∀j, xj ≤ yj
}

This problem can be solved using the ellip-
soid method since a separation oracle can be im-
plemented for each matroid polytope and there-
fore also for this LP.

6 Conclusion

In other words, for any monotone submodular
function, if you can optimize either of its ex-
tension f∗ or f+ in polynomial time, then this

framework allows you to get a (1 − 1
e )-solution

under matroid constraint. As noted in the pa-
per, in general, f∗ and f+ are not computable or
optimizable in polynomial time unless P = NP .
The authors show that for any sum of weighted
rank functions of matroids, f+ can be formulated
as an LP which can be optimized in polynomial
time.

References

[1] Alexander A Ageev and Maxim I Sviri-
denko. Pipage rounding: A new method of
constructing algorithms with proven perfor-
mance guarantee. Journal of Combinatorial
Optimization, 8(3):307–328, 2004.

[2] Gruia Calinescu, Chandra Chekuri, Mar-
tin Pál, and Jan Vondrák. Maximizing a
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