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1 Notation

Let N be a ground set of n elements and let
f be a non-decreasing submodular set function
f:2Y¥ — R*. Let M be a matroid. We recall
the definition of a matroid below:

Definition 1. A matroid M is a pair (N, 1),
where N is a ground set and I is a family of
subsets of N, called the independent sets of the
matroid, such that:

o I £ (generally, we suppose ) € I)
e Ac BandBel — A€l

e V(A,B) € I?/|A] < |B]
AuU{c}t eI

— dc e B :

When it is not ambiguous, we will use A € 1
and A € M indiscrimanately. For a vector
y € [0,1]N, we define y(5) := 3", yi.- We define
the polytope of a matroid M as:

P(M) = {y € [0, 1] : y(S) <rm(S) VS C N}

We define a tight set with respect to y as any
set such that y(A) = ryr(A). Finally, the base
polytope B(M) is defined as:

B(M):={y e [0,1]V : y(N) =rn(N)}

To have some geometric interpretation in
mind, the vertices of P(M) are the independent
sets of M and the vertices of B(M) are the bases
of M. Note that it is easy to optimize linear
functions over P(M). In fact, for weight func-
tions, the greedy algorithm is optimal. We are

going to need two properties of tight sets and
optimization on matroid polytopes. Since these
properties are not proved in [2], we prove them
below.

Proposition 1. If A and B are tight sets with
respect to y, AU B and AN B are tight sets with
respect 1o y.

Proof. Suppose that A and B are tight with re-
spect to y:

y(AUB) +y(ANB) =y(A) +y(B)
= TM(A) +ry(B)
> rar(AU B) + (AN B)

The final inequality is by submodularity of the
matroid rank function. Observing that

y(AUB)+y(ANB) <ry(AUB)+ry(ANB)
completes the proof. O

Proposition 2. If f is non-decreasing,
then there exists an optimum solution y* to

max{f(y) Ty € P(M)} such that N s tight
with respect to y*.

*

Proof. Suppose that N is not tight w.r.t. y*.
Suppose that there is a variable y; which be-
longs to no tight set with respect to y*, then
we can increase y* along this coordinate until
we reach a tightness constraint and still remain
at optimum, since f is non-decreasing. Suppose
no such variable exist, then the set of tight sets
covers all variables, and therefore, their union is
equal to N. From the previous proposition, NV is
also tight. O



2  Framework
Our objective is to maximize f(S) for S € I:

max f(5)

Suppose we are given a monotone function F
defined on the polytope P(M), which coin-
cides with f on vectors y € {0,1}" such that
V(i,5), t — F(y+t(e;j—e;)) is convex (F is said
to be cross-convex). Then it can be shown that
any fractional vector y can be rounded to an in-
tegral solution g in polynomial time such that
F(y) > F(y). This is known as pipage round-
ing. We will show that for any submodular
function, there is a canonical relaxation, known
as the multilinear relaxation, which verifies
these properties.

However, the multilinear relaxation is not
necessarily optimizable. We are therefore go-
ing to construct extensions of f, f on the ma-
troid polytope P(M), which are monotone, co-
incide with f if y € {0,1}"V, can be optimized in
polynomial time, and such that 3o, Vy, F(y) >
of (y). The general framework is then:

1. Optimize function f on the matroid poly-
tope P(M) which outputs fractional solu-
tion §y € P(M)

2. Round gy using pipage rounding and out-
put integral solution § € M such that

F(g9) = F(9)

3. Output §. We have f(§) = F(9) > F(§) >
af(y) > af(y*) = aOPT, where y* is the
optimal solution to maxyeys f.

3 Pipage Rounding

Observe that any tight set cannot contain ex-
actly one non-integral variables because the rank
constraints are integral. Let y; and y; be two
fractional variables. Let yf,j tt=y+tle —ey).
If a set contains both y; and y;, then for any
value of t, its constraint is not violated. If a set

contains only y; (or y;), then its constraint can-
not be matched exactly. We can therefore define
et > 0 (resp. € < 0) to be the greatest (resp.
smallest) value that can be added to y with-
out violating any constraints. Note that both
yij =y + e (e; —e;) and Yi; =y t+e (e —ej)
are in the matroid polytope.

In such a way, as long as y is fractional, we
can find two fractional variables and exchange
mass from one to the other without decreasing
the value for F'. Unlike the [1] paper, we are not
guaranteed to make one of the (i,j) integral at
the end of a single iteration. However, we show
that after n iterations, we are guaranteed to gain
at least one integral variable.

Data: Fractional y

while vy is not integral do
Let A be minimal tight set containing

fractional (¢,7) € A if
P(5) > F(Y,)) then
| v
else
| v,
end

end
Result: Output y, {(y)

Finding a minimal tight set The algorithm
requires us to find a minimal tight set. This can
in fact be done in polynomial time. We sup-
posed “wlog” that N is a tight set for y*. At
every iteration, we can remove an element from
the current set, starting at N, until we are no
longer tight.

Proving that in n? iterations, y is integral
At iteration h, let A; be the minimal tight set
chosen. The main idea is to prove that at every
iteration, one of two things happen:

L. |Apsa] < |Ap]

2. yp4+1 has one more integral variable than
Yn



Proof. (sketch) The author’s provide a proof for
a slightly modified algorithm, and state that the
proof is also true in the original case. The mod-
ification is the following: Aj is not only a min-
imal tight set, but it is a minimal tight set of
miminum cardinality among such minimal sets.

Suppose that you do not get one more inte-
gral variable at iteration i + 1, then there is an-
other tight set B which stopped us from increas-
ing |¢| enough to gain an extra integral variable.
B can only contain one of the two variables, oth-
erwise it could not have become tight as we ex-
changed mass. Therefore |Ap N B| < |Ay|. Since
Ap and B are tight sets, then A, N B is also tight
and|Ah+1|<|AhL ]

It follows that y,+5,—1 has at least one more
integral variable than y;, (since |A,| < n) and
that pipage rounding runs in at most O(n?) it-
erations.

4 Relaxing f

Multilinear Extension For any submodular
function f, there is a canonical extension which
is cross-convex, defined as such

F(y) :==Eyey f(9)
where § ~ gy is chosen by independently
rounding up 3’s value with probability y; and
rounding down with probability 1 —y;. It is easy
to see that Yy € {0,1}V, F(y) = f(y). It is also
easy to see that if f is monotone, then F is also
monotone.

Proposition 3. F is cross-convex: t — F(y +
t(e; — €j)) is convex on its domain.

Proof. Let (i,j) € N? and let p,(S) be the prob-
ability that S is the set obtained by randomized
rounding on N\, j.

Fly)= > py(S)(1 =) (1 —y;)f(S)
SCN\{ij}
+ (1 =)y f(S+7)
+yi(1—y;) f(S+7)
+yiy; f(S +i+j)]

t— F(y+t(e; —ej)) is a degree two polynomial
with leading coefficient — f(S)+ f(S+7)+ f(S+
i) — f(S+1i+j) > 0 by submodularity. O

We are now going to consider several inter-
esting extensions of f, which in certain cases, can
be shown to be optimizable in polynomial time
and can be proven to verify F(y) > (1 — %) f).

[Open Question]. The constant-factor approz-
imation only needs to be verified at the optimal y
in P(M) for f. Can we show that if it is verified
for the optimal y, then under certain properties
of f, it is verified for all y?

Extension fT

fHy)=max{ > asf(9):> as<1,
SCN S

as >0,¥j, > ag <y}
S:jes

Let us provide a small interpretation of this
function. Notice that it is an LP. However, in the
general case, it cannot be optimized in polyno-
mial time since it has exponentially many vari-
ables. For this function, instead of picking items
independently with probability y; (as we did in
F), we pick sets. We can therefore think of f*
as a correlated distribution for y, whereas F' is
an independent distribution.

[Open Question]. What is the dual of f+? The
dual of f+ will have exponentially many con-
straints, but there are cases where we can still
optimize such an LP. Can the dual of f* be op-
timized in polynomial time?

Extension f*

fy) =min{ f(S)+ Y fs(j)y;: SCN

JEN

This extension is easy to analyse. Note that
here we are minimizing! Consider a binary vec-
tor y € {0,1}. If y; = 1, then by not including



element j in S, you pay fs(j) and fg(j') for any
other element j’, which would be more than if
you included j in S. If y; = 0, then if you in-
clude element j in S, you increase the value of
f(S), whereas if you do not, you pay no addi-
tional penalty. It is easy to see then that for any
integral vector y, f*(y) = f(S) where y = 1g

[Open Question]. We can think of f* to be
a first-order extension of f. What does exten-
sion mean? What would a second-order exten-
ston look like?

Lemma 1. If f is monotone submodular:
Fy) < fT(y) < f"(v)

Proof. f*(y) > F(y) since taking ag equal to
the probability of obtaining set S by random-
ized rounding of y is a feasible vector for f*. To
see that f*(y) > f*(y), observe that for any set
T C S and any feasible vector ag:

STasf(8) <Y a [ ST+ f2()
S S jeSs
<H(T)+ D yifr()

JEN
O

Lemma 2. For any monotone submodular f,
F(y)> (1-1) f*(y)

Proof. The general idea of the proof is to build a
set S(t) incrementally and randomly, such that
(1= 2)f* () <E(f(S(1))) < F(y).

How do we construct the set S(¢)? For each
element, include it in S(¢) with an independent
poisson clock C; of parameter y;. In other words,
as soon as the poisson clock C; “rings” for ele-
ment j, include it in S(¢) and for all future time
steps.

Recall that the probability that

ef)\dt<)\dt)k

P(C(t+dt) = C(t) = k) = —

Note that the probability we include an element
jin S(1):

P(y; € S(1)) =1—e% <y
= E(f(5(1))) < F(y)

We can now write the following differential equa-
tion from the independence of the poisson clocks
and “memoryless-ness” of a poisson process.

E(f(S(t+dt)) — f(S(1)IS(t) = 5)
=) fs(i)y;dt

> (f*(y) — £(5))dt

The first equality is obtained by observing that,
conditioned on S(t), the marginal increase to
f(S(t)) for very small dt is the sum of the dis-
joint event that clock C; “rings” between ¢ and
t + dt. Tt is easy to see that this probability is
y;dt, by observing the expression of the poisson
process. The second inequality is the fundamen-
tal lemma which holds for submodular functions.
Dividing by dt on both sides, and by taking the
expectation with respect to S(t), we get the fol-
lowing differential equation from the property of
iterated expectations:

%(]E(f(s(t +dt)—f(S(1)))
> f*(y) — E(f(S(1)))

Solving the differential equation in ¢ : t —
E(f(S(1))) : &/() + 6(t) > f*(y) we get B(t) >
(1—e™t) f*(y), which concludes the proof by tak-
ing t = 1. O

5 Weighted Rank Functions

Note that in general f* and f* cannot be op-
timized in polynomial time. In [2], the au-
thors cover a special case of submodular func-
tions for which f* is optimizable in polynomial
time: sums of weighted rank functions.



We simply the presentation of the paper by
considering a single matroid rank function, the
extension is straight-forward. Let

g(S) :=max{w(l): I C S, I € X}

where X are the independent sets of a matroid.

P =max{ 3" asg(S): Y as <1,
SCN S
ag > 0,7, Z ag < yj}
S:jes
:maX{ZQIij : Zag <1,
IeX jeI leX

ag > 0,Vj, Z as <y;}
rexjel

by assuming without loss of generality that
ag is nonzero only for S € X. Indeed, any S
can be substituted for the value of the maximal
independent set of S in X without changing the
value of g(.5).

We can inverse the summation:

dard wi=Y Y wjoy

Iex  jeI JjEN IeX:jel

Let z; = > cx.jeyou. Notice that z; €
P(X), and that any vector of P(X) can be writ-
ten in this way. Indeed, > ;cxyar = 1. The
optimisation problem becomes:

gt(y) = max{ Z wjzj v € P(X),Vj, x; < yj}
JEN

This problem can be solved using the ellip-
soid method since a separation oracle can be im-
plemented for each matroid polytope and there-
fore also for this LP.

6 Conclusion

In other words, for any monotone submodular
function, if you can optimize either of its ex-
tension f* or f* in polynomial time, then this

framework allows you to get a (1 — 1)-solution
under matroid constraint. As noted in the pa-
per, in general, f* and f* are not computable or
optimizable in polynomial time unless P = N P.
The authors show that for any sum of weighted
rank functions of matroids, f* can be formulated
as an LP which can be optimized in polynomial
time.
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