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1 Introduction

Last meeting, we studied how to maximize a mono-
tone submodular function f subject to a matroid
constraint using the pipage rounding technique when
f is a sum of weighted rank functions of matroids [1].
The framework is to maximize an extension f̃ of f
that is an approximation of the multilinear extension
F of f and to then use pipage rounding on F .

In this paper, Vondrák [3] shows that instead of
maximizing f̃ , we can maximize F directly. The is-
sue with this approach in the framework of [1] is that
f̃ can be written as an LP, which can then be max-
imized easily, however it is not clear how to write
an LP formulation for the multilinear relaxation of
any submodular function. The solution is to create
a continuous greedy process where we slowly move
a point inside of the feasible region towards a good
solution.

This approach, combined with the pipage round-
ing technique, gives a (1 − 1/e)-approximation for
F and for sudmodular maximization subject to any
matroid constraint. This result matches the known
lower bound of (1−1/e+ ε) for any ε > 0 and gener-
alizing the (1 − 1/e)-approximation of [1] for a sum
of weighted rank functions of matroids to any sub-
modular function. In particular, this generalization
provides a (1− 1/e)-approximation for the Submod-
ular Welfare Problem in the value oracle model.

2 Preliminaries

The Multilinear Extension F : [0, 1]N → R+ of
a discrete submodular function f : 2N → R+, also
called the extension by expectation, is defined as the
expected value of f(S) for some y ∈ [0, 1]N where
each agent i is in S with probability yi, indepen-
dently.

Notation: for the rest of these reading notes,

S ∼ y

is a set where each agent i is in S with probability
yi, independently.

Therefore,

F (y) = ES∼y[f(S)] 1 =
∑
R⊆N

f(R)
∏
i∈R

yi
∏
i 6∈R

(1− yi).

The following properties of F will be useful (see
http://theory.stanford.edu/ jvondrak/CS369P-files/
lec17.pdf for proofs):

• If f is monotone, then F is non-decreasing along
any line of direction d ≥ 0: ∂F

∂yj
≥ 0.

• If f is submodular, then F is concave along any
line of direction d ≥ 0: ∂2F

∂yi∂yj
≤ 0.

• If f is submodular, then F is convex along any
line of direction ei − ej .

The non-decreasing and concavity properties of F
are necessary for the maximization of F and the con-
vexity property of F is necessary for pipage rounding.

3 The Continuous Greedy Process

We start by describing the continuous process. This
process will be discretized in the next section, so the
purpose of this process is to give an intuition of how
a (1−1/e)-approximation of F is achieved. This con-
tinuous process is for for any down-monotone poly-
tope P and for any smooth monontone submodular
functions F , meaning F is non-decreasing, concave,
and with second partial derivatives everywhere. The
function y(t) defined in this process can be seen as a
particle moving in the feasible region.

This particle moves from t = 0 to t = 1 in a direc-
tion constrained by the feasible region P to maximize
local gain.

Lemma 1. y(1) ∈ P and F (y(1)) ≥ (1− 1/e)OPT
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Algorithm 1 The Continuous Greedy Process

1: Start with y(0) = 0
2: Let v(y) = argmaxv∈P (v · ∇F (y))

3: Set dy
dt = v(y)

4: Output y(1)

Proof. Observe that y(1) is a convex combination of
vectors in P , so y(1) ∈ P . Next, we claim the fol-
lowing: for any y ∈ P , ∃v ∈ P such that v ·∇F (y) ≥
OPT − F (y). Fix y ∈ P , let z be such that F (z) =
OPT , and defined v = (z − y)+. Then,

v · ∇F (y) ≥ F (y + v)− F (y) ≥ OPT − F (y)

where the first inequality follows from ∂F
∂yj
≥ 0 and

∂2F
∂yi∂yj

≤ 0. This claim says that the rate of increase

in F is at least the deficit OPT − F (y), which is
the main observation that will get us an (1 − 1/e)-
approximation using differential equations.

We now use the chain rule,

dF

dt
=
∑
j

∂F (y)

∂yj

dyj
dt

= ∇F (y) · v(y) ≥ OPT − F (y).

Solving the differential equation dF
dt ≥ OPT − F (y),

we get our desired result: F (y(t)) ≥ (1 − e−t)OPT .

4 Discretization for Matroid Con-
straints

In this section, Algorithm 1 is discretized to obtain a
polynomial time algorithm. The challenge is to dis-
cretize the continuous process in steps small enough
to get an error from this discretization that is at
most o(1). In the continuous greedy algorithm, for-
mally described below, F is the multilinear extension
of some monotone submodular function f and the
feasibility region is a matroid polytope P (M) with
M = (N, I) .

This algorithm is very similar to the continuous
process, except that we use f instead of F for compu-
tation purposes. Observe that w(t) is the local gain
at y(t), which is the analogue of ∇F (y), and that
I(t) is the feasible vector that maximizes the local
gain, which is the analogue of v(y).

Note that this algorithm has a polynomial run-
time. There are n2 iterations and in each iteration,
n5 samples are needed for each of the n agents. The

Algorithm 2 The Continuous Greedy Algorithm

1: Start with δ = 1/n2, t = 0, and y(0) = 0
2: Estimate wj(t) := E

[
fR(t)(j)

]
with n5 samples,

where R(t) is the random set such that R(t) ∼
y(t)

3: Let I(t) be the maximum weight independent set
in M according to weights wj(t)

4: Set y(t+ δ) = y(t) + δ · 1I(t)
5: Output y(1)

maximum weight independent set is found using the
greedy algorithm.

We first show the following useful lemma, which
is a generalization of the alternate definition for sub-
modular functions that we used for the proofs of the
greedy algorithm during the first meeting to the mul-
tilinear extension of submodular functions.

Lemma 2. Let f be a monotone submodular func-
tion and y ∈ [0, 1]N , then

OPT ≤ F (y) + max
I∈I

∑
j∈I

ER∼y[fR(j)]

Proof. Let O be such that f(O) = OPT , then since
f is a submodular function,

OPT = f(O) ≤ f(R) +
∑
j∈O

fR(j)

for any R. So taking over the sets R in expectation:

OPT ≤ ER∼y

f(R) +
∑
j∈O

fR(j)


≤ F (y) + max

I∈I

∑
j∈I

ER∼y[fR(j)]

We are now ready to prove the main result.

Theorem 1. y(1) ∈ P and F (y(1)) ≥ (1 − 1/e −
o(1))OPT with high probability

Proof. Again, y(1) is a convex combination of vectors
in P , so y(1) ∈ P . Define D(t) to be the random set
such that D(t) ∼ δ · 1I(t). So R(t) is the random set
with probability that is the current position of y and
D(t) is the random set with probability the marginal
increase in y at time step t. Observe that

F (y(t+ δ)) = E[f(R(t+ δ))] ≥ E[f(R(t) ∪D(t))]
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since Pr(i ∈ R(t+ δ)) = yi(t) + δ · (1I(t))i and
Pr(i ∈ R(t) ∪D(t)) = 1 − (1 − yi(t))(1 − δ · (1I(t))i)
implies that Pr(i ∈ R(t+ δ)) ≥ Pr(i ∈ R(t) ∪D(t))
for any agent i. We now lower bound the increase in
F at a step t:

F (y(t+ δ))− F (y(t)) (1)

≥E[f(R(t) ∪D(t))− f(R(t))] (2)

≥
∑
j

Pr(D(t) = {j})E
[
fR(t)(j)

]
(3)

=
∑
j∈I(t)

δ(1− δ)|I(t)|−1E
[
fR(t)(j)

]
(4)

≥δ(1− nδ)
∑
j∈I(t)

E
[
fR(t)(j)

]
(5)

w.h.p.
≥ δ(1− 1/n)(max

I∈I

∑
j∈I

E
[
fR(t)(j)

]
−OPT/n)

(6)

≥δ(1− 1/n)(OPT − F (y(t))−OPT/n) (7)

≥δ( ¯OPT − F (y(t))). (8)

In (3), we only consider the case where D(t) is a
singleton. In (5), note that the runtime could by
slightly improved by taking δ = 1/nr and upper
bounding |I(t)| − 1 by r where r is the rank of the
matroidM. In (6), by Chernoff bounds, the error in
the estimate of wj(t) is OPT/n2 for any j with high
probability since OPT ≥ fR(j). So by union bound,
the total error from all the agents in I(t) ∪ maxI∈I
is at most OPT/n with high probability. (7) is by
lemma 2 and in (8), we take ¯OPT = (1− 2/n)OPT .
We make the same observation as for the the con-
tinuous greedy process: the rate of increase in F is
at least the deficit OPT − F (y). Using a similar ar-
gument by induction as in the proofs for the greedy
algorithms that we saw during our first meeting, we
get that F (y(1)) ≥ (1− 1/e− o(1))OPT .

Remark: it is possible to remove the o(1) term
by being smarter about how to pick D(t).

5 Submodular Welfare

Consider the submodular welfare problem which con-
sists of n agents with submodular utility functions
w1, . . . , wn and m items. The goal is to allocate the
items to agents to maximize total welfare.

In this section, we show that the continuous greedy
algorithm can be used to obtain a (1−1/e)-approximation

algorithm for the submodular welfare problem with-
out using pipage rounding. Note that this result is
an improvement on the (1 − 1/e)-approximation by
[2], which is only in the demand oracle model and
not for the more general value oracle model.

Define the variable yij to be the extent to which
item j is allocated to agent i. The algorithm de-
scribed below is the same as the continuous greedy
algorithm but with notation adapted to the submod-
ular welfare problem.

Algorithm 3 The Continuous Greedy Algorithm for
Submodular Welfare

1: Start with δ = 1/(mn)2, t = 0, and y(0) = 0
2: Estimate wij(t) := E

[
fRi(t)(j)

]
with (mn)5 sam-

ples, where Ri(t) is the random set of items such
that Ri(t) ∼ yi(t)

3: For each j, let ij(t) = argmaxiwij(t) be the pre-
ferred agent for item j.

4: Set yij(t+ δ) = yij(t) + δ if i = ij(t) and yij(t+
δ) = yij(t) otherwise.

5: Output y(1)

By theorem 1, using the continuous Greedy algo-
rithm and then pipage rounding, we get a (1− 1/e−
o(1))-approximation with high probability. However,
an interesting remark is that it is possible to avoid
doing pipage rounding.

For each item j independently, allocate item j to
at most one agent where each agent has probability
yij of getting the item. First, note that this is pos-
sible since for any j,

∑
i yij ≤ 1 since our matroid

constraint is that we can allocate each item to at
most one agent. Second, note that we treating each
item j independently but that we are not allocating j
to different agents independently, which is fine since
this does not affect the objective function

∑
wi, that

is additive over agents, in expectation.

6 Conclusion

This paper introduces the continuous greedy algo-
rithm, which maximizes the multilinear extension F
of a submodular function f subject to a matroid con-
straint with a (1 − 1/e)-appproximation. By com-
bining this algorithm with pipage rounding, we get a
(1−1/e)-appproximation for submodular maximiza-
tion subject to any matroid constraint. In particu-
lar, this result gives a (1 − 1/e)-appproximation for
the submodular welfare problem in the value ora-
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cle model, improving on previous results. Note that
the continuous greedy algorithm is non-deterministic
since it requires sampling, an open question is to find
a deterministic algorithm that achieves the same ap-
proximation.
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