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1 Background and Recap
We wish to approximately maximize f , a nonnegative submodular
function on 2N . We consider the space [0, 1]N , where a set S
corresponds to the indicator point xS (with 1s at the coordinates of
elements in S and 0s elsewhere). We can think of a point x ∈ [0, 1]N

as representing a distribution on 2N , and let R(x) denote a random
set obtained by including each i independently with probability xi.

The multilinear extension of f is denoted F : [0, 1]N → R, and is
defined by F (x) = ES∼x f(S), where S ∼ x means to draw S ran-
domly by including each element i ∈ N independently with proba-
bility xi. In other words, F (x) =

∑
S f(S)

∏
i∈S xi

∏
i 6∈S(1− xi).

Last time, Eric covered the continuous greedy algorithm of
Vondrák [2008], Calinescu et al. [2011]. In that setting, f was
monotone and we had matroid constraints. The idea was to find
a point x such that F (x) ≥

(
1− 1

e

)
maxy F (y), noting that

maxy F (y) ≥ maxS f(S). We could then round this point x into a
set S such that f(S) ≥ F (x) using the pipage rounding technique
covered by Jean, of Ageev and Sviridenko [2004].

2 Overview: This Time
We now examine maximizing submodular functions f that may be
non-monotone over independence constraints. These notes cover the
paper introducing contention resolution schemes for this problem,
Vondrák et al. [2011].

Setup: f is a nonnegative submodular function on 2N , with mul-
tilinear extension F . I is a downward-closed set of subsets: If
A ∈ I and A′ ⊆ A, then A′ ∈ I. We wish to approximately solve
maxS∈I f(S), given access to value queries (specify S and receive
f(S)).1

As in other papers recently, we take two steps: (1) approximately
maximize the multilinear extension F of f ; (2) round this solution
to get an appoximately optimal set for f .

For our problem, the polytope over which we maximize F is
PI = Conv({xS : S ∈ I}), the convex hull of the set of indicators
of the independent sets. Note that if our constraint is a matroid, this
is the same polytope as P (M) = {y ∈ [0, 1]N : ∀S,

∑
i∈S yi ≤

rM (S)} with rM the rank function.
Step 1: An α-approximation algorithm for F . One shows

that there is a polynomial-time algorithm returning some y with
F (y) ≥ αmaxx∈P F (x) for any polytope P that is “down-closed”
(x ∈ P =⇒ cx ∈ P for all c ∈ [0, 1]) and “solvable” (one can
optimize linear objectives over P in polynomial time).

In this paper, the first such (constant-factor) algorithm was
given for multilinear extensions of non-monotone f over general

1The paper will not achieve this in polynomial time for all families I, but for
certain ones like matroid constraints and knapsack constraints.

downward-closed constraints (previous cases such as continuous
greedy were for monotone f and/or matroids). The factor obtained
is α = 0.325 (with a complicated simulated annealing approach
that appears only in the conference version of the paper; they also
give essentially continuous-greedy approaches achieving 0.25 and
0.309). However, subsequent to this paper, Feldman et al. [2011]
give a “unified continuous greedy” algorithm with at 1

e − ε ≈ 0.367
approximation. So we will not cover the algorithms in this paper.

Step 2: “Contention resolution schemes” for rounding ap-
proximate maximizers of F . The algorithm from Step 1 returns
some vector x ∈ [0, 1]N . The problem now is to round x to obtain
a solution that is both feasible and has high value. This paper in-
troduces monotone c-balanced contention resolution schemes for
this purpose. The idea is to create a set S by including each element
i with probability xi independently, then to construct some final
output as a subset I of S so that I ∈ I (so it is feasible) and there is
a guarantee for each element of S on its probability of inclusion in
I , in terms of c. It is then shown that such a scheme implies that the
final set I satisfies E f(I) ≥ cF (x).

The name “contention resolution” comes (I believe) from the idea
that each element i ∈ support(x) is “contending” to be included
in the final solution, but this violates the constraints and so these
contentions must be resolved. The term “balanced” comes from
the c, which roughly ensures that each element has a “c chance” of
being included.

Combining the steps. Given an α-approximation algorithm for
F and a monotone c-balanced CR scheme, we have a αc approxi-
mation in expectation, since we have an output I satisfying

E f(I) ≥ cF (x) ≥ c
(
αmax
x∈PI

F (x)

)
≥ cαmax

S∈I
f(S).

(Recall that the optimum of the multilinear extension upper-bounds
the optimum of f since any feasible solution S of f yields a feasible
solution for F of the same value.)

Other contributions. The paper also characterizes when CR
schemes can be constructed and traces a connection to the “correla-
tion gap”, which we will briefly cover; and shows that CR schemes
can be constructed for matroids, knapsacks, and some other packing
constraints. The actual approximation ratios were improved due to
later improvements for approximating F , so I don’t list the ratios
here.

What are CR Schemes good for? (Note: subject to later im-
provements we’ve not yet covered....) If you want to maximize f
over a matroid constraint, even if f is not monotone, then you should
use pipage rounding instead of CR schemes and lose nothing in the
rounding step — this is due to the appendix of Vondrák [2013] and
is mentioned in Feldman et al. [2011], where together with their
1
e approximation for maximizing F it gives 1

e for maximizing any
nonnegative submodular f over a matroid.
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But CR schemes are good for other types of constraints like
knapsack, and especially good at composing (if we have a CR
scheme for two different constraints, we have one for the intersection
of their constraints).

3 Contention Resolution

Let R(x) be a random set obtained by including each item i with
probability xi independently. The following definition and theorem
are simplifications of those presented in the paper, but they capture
the intuition.

Definition 1. Let b, c ∈ [0, 1]. A (b, c)-balanced Bo-CR scheme π
for PI is a procedure that, for every x ∈ bPI = {b ·x : x ∈ PI} and
everyA ∈ 2N , returns a (random) set I = πx(A) where, first, I ∈ I
and I ⊆ A ∩ support(x); and second, for each i ∈ support(x) ∩A,
we have PrI [i ∈ I] ≥ c.

Why is the b useful? Because of continuous-greedy-type algo-
rithms: We can always terminate them at time b < 1 to obtain a
solution in bPI . So we include b in the definition and this is useful
in some contexts.

Now we show why the definition is useful: If we have a CR
scheme, then we can use it to round any x to get (in expectation)
a c-approximation to F (x). The idea is to draw R(x) randomly
by taking each i with probability xi, then apply the CR scheme to
R(x).

Theorem 2. If π is a monotone (b, c)-balanced Bo-CR scheme, then
for any x ∈ bPI , letting the random output I = πx(R(x)), we have
E f(I) ≥ cF (x).

Proof. Note that cF (x) = cE f(R(x)). Let Ii = I ∩ {1, . . . , i};
that is, I when only considering the first i elements of N . Similarly,
let R = R(x) be the randomly drawn input and let Ri = R ∩
{1, . . . , i}. Then using linearity of expectation,

E f(I) = ER←R(x)

∑
i

EI←πx(R) [f(Ii)− f(Ii−1)]

= ER←R(x)

∑
i∈R

EI←πx(R) [f(Ii)− f(Ii−1)]

= ER←R(x)

∑
i∈R

∑
I⊆R:i∈I

Pr[I = πx(R)]
(
fIi−1

(i)
)

≥ ER←R(x)

∑
i∈R

∑
I⊆R:i∈I

Pr[I = πx(R)]
(
fRi−1

(i)
)

≥ ER←R(x)

∑
i∈R

c
(
fRi−1(i)

)
= cER←R(x) f(R).

Here, we used the notation fS(i) = f(S ∪ {i}) − f(S). The first
inequality followed by submodularity, because Ii−1 ⊆ Ri−1 (since
I ⊆ R). The second inequality followed by the definition of (b, c)-
balanced CR schemes, because the total probability of picking an
I ⊆ R with i ∈ I is at least c.

Now let’s give the full definition:

Definition 3. Let b, c ∈ [0, 1]. A (b, c)-balanced CR scheme π for
PI is a procedure that, for every x ∈ bPI = {b · x : x ∈ PI} and
everyA ∈ 2N , returns a (random) set I = πx(A) where, first, I ∈ I
and I ⊆ A ∩ support(x); and second, for each i ∈ support(x), we
have PrI [i ∈ πx(R(x)) | i ∈ R(x)] ≥ c.

The scheme is monotone if A1 ⊆ A2 implies that Pr[i ∈
πx(A1)] ≥ Pr[i ∈ πx(A2)].

The paper proves the following:

Theorem 4. Let ηf be the following “pruning function”: J = η(I)
is constructed by sequentially adding each i ∈ I to J only if it
increases f(J), or otherwise tossing out i.

If π is a monotone (b, c)-balanced CR scheme, then for any x ∈
bPI , letting the random output I = πx(R(x)), and J = ηf (I), we
have E f(J) ≥ cF (x).

Some facts about composing or changing CR schemes:

Claim 5. A (b, c)-balanced CR scheme π can be transformed into a
(1, bc)-balanced CR scheme π′.

The proof given by the authors is: define π′x(A) to simply remove
each element of A independently with probability 1− b, obtaining
some set A′, and return πx(A′). But I am not completely clear on
this, because it seems to me that they should return πbx(A′).

Lemma 6. If I =
⋂k
i=1 Ii and each PIi has a (b, ci)-CR scheme,

then PI has a (b,
∏
i ci)-CR scheme.

The idea is to let πx(A) = ∩iπi,x(A). I think the intuition is that
Pr[i ∈ πx(A)] ≥

∏
i Pr[i ∈ πi,x(A)].

4 Existence of CR schemes

In this section, we use an LP to investigate existence and optimality
of CR schemes. The LP is very large, so this won’t always be useful
for constructing a polynomial-time scheme (although sometimes it
will), but will illuminate some structure.

Let us fix x and focus on computing the optimal scheme for x. A
deterministic scheme is a mapping φ : 2N to I. Any randomized
scheme can be written as a distribution λ over deterministic schemes,
where with probability λφ we pick scheme φ and apply it. The key
condition we need to satisfy is that Pr[i ∈ πx(R(x)) | i ∈ R(x)] ≥
c. Using that πx can be written as a distribution λ over φ, the left side
is
∑
φ λφ Pr[i ∈ φ(R(x)) | i ∈ R(x)]. Thus the LP for maximizing

c is

max c

s.t.
∑
φ

λφ Pr[i ∈ φ(R(x)) | i ∈ R(x)] ≥ c ∀i ∈ [N ]

∑
φ

λφ = 1

λφ ≥ 0 ∀φ.
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The dual2 is

min µ

s.t.
N∑
i=1

zi Pr[i ∈ φ(R(x)) | i ∈ R(x)] ≤ µ ∀φ

N∑
i=1

zi = 1

zi ≥ 0 ∀i.

We can think of this as a two-player game where the column player
is choosing a distribution λ over φ and the row player is choosing a
distribution z over i. When each player draws from her distribution,
we get a φ and an i, and the column player’s payoff is Pr[i ∈
φ(R(x)) | i ∈ R(x)] while the row player’s payoff is one minus
this. The primal maximizes the amount the column player can
guarantee herself, while the dual maximizes the amount the row
player can guarantee herself.

4.1 Characterization of solution
An optimal solution, by strong duality, is the optimal value of the
dual, which will be tight at some constraint:

min
z

max
φ

N∑
i=1

zi Pr[i ∈ φ(R(x)) | i ∈ R(x)].

Noting that Pr[i ∈ φ(R(x)) | i ∈ R(x)] = Pr[i ∈
φ(R(x))]/Pr[i ∈ R(x)], and the denominator is xi, let us make the
change of variables yi = zi

xi
:

min
y:
∑

i xiyi=1
max
φ

N∑
i=1

yi Pr[i ∈ φ(R(x))]

= min
y:
∑

i xiyi=1
max
φ

ES←φ(R(x))

[∑
i∈S

yi

]
.

The claim is that this is maximized by the φ that sets φ(R) =
argmaxS⊆R,S∈I

∑
i∈S yi. This is the “max-weight independent

set problem”. Define ry(T ) = maxS⊆T,S∈I
∑
i∈S yi to be the

“weighted rank function”, or weight of the max-weight independent
set for the problem. Then the optimal solution is

min
y:
∑

i xiyi=1
ER←R(x) ry(R)

= min
y≥0

ER←R(x) ry(R)∑N
i=1 xiyi

4.2 Efficiently solving this problem via the dual.
We can efficiently solve the dual if we have a separation oracle.
To do this, given µ and z, we just need to check if there is any φ
such that the corresponding constraint is violated, i.e.

∑
i zi Pr[i ∈

φ(R(x)) | i ∈ R(x)] > µ, and if so output a separating hyperplane.
By the previous subsection, if we have an algorithm for the max-

weight independent set problem, then we can find this φ and thus this
most-violated constraint. (The appendix describes how to find the

2If reading the paper, notice that I have taken the change of variables zi = yixi.

separating hyperplane and handling details.) In addition, to estimate
the violation of the constraint, we have to actually repeatedly ran-
domly sample R← R(x) and compute φ(R) for the φ just defined
(max-weight independent set).

The entire algorithm is therefore this: Run the ellipsoid algorithm
using the above procedure as a separation oracle until we have found
a polynomial number of constraints certifying that the dual optimum
is at least µ where the true optimum µ∗ satisfies µ∗ ≤ µ+ ε. Then,
solve the primal restricted to this polynomial number of variables
corresponding to these constraints (again sampling is necessary).
The paper also discusses how, if the max-weight independent set
algorithm is monotone, then so is the resulting CR scheme.

Monotonicity. Luckily, it turns out that if the algorithm for max-
weight independent set is monotone, then the resulting CR scheme
is monotone.

5 Correlation Gap
Let f be a set function on [N ]. For any distribution p on 2N , let pi be
the marginal probability that i is included and let ×ipi be the distri-
bution on 2N where i is included with probability pi independently
of all other elements. The correlation gap of f is

inf
p

ES∼×ipi f(S)

ES∼p f(S)
.

(Note that in mechanism design it is usually one over this value.)
We can (for fun) define the concave closure of a set function f ; it

is

f+(x) = max
p

{
ES∼p f(S) :

∑
S

p(S)IS = x

}
where IS is the vector with ones at indices i in S and zeroes else-
where. In other words, it is exactly the largest possible expected
value of f(S) over any distribution whose marginals are given by x.
Thus the correlation gap can be written as

inf
x

F (x)

f+(x)
.

Now subject to a downward-closed constraint I, define the corre-
lation gap to be

inf
x∈PI

F (x)

f+(x)
.

Now in particular, if we consider the weighted rank function
defined above, ry(T ) = maxS⊆T,S∈I

∑
i∈S yi, then the correlation

gap is

inf
x∈PI ,y≥0

E ry(R(x))

r+y (x)
.

But what is r+y (x)? Assuming that x is in the polytope, x =∑
S∈I αS1S , where 1S is the indicator vector for the set S. But if

we take this distribution α, then we get each element i of weight yi
exactly xi times, so we get x · y =

∑
i xiyi. To make it more clear,

we never have to drop any elements from the sets we pick, unlike
when we draw independently from each coordinate. Thus, we have
proven

Claim 7. The correlation gap of the weighted rank function over
I is the same as the maximum c such that I has a c-balanced CR
scheme.
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We can also see this in the LP primal, as follows. Because x ∈ PI ,
x can be written as

∑
S αSxS . Imagine that instead of drawingR(x)

by drawing each i independently with probability xi, we drew R(x)
from the correlated distribution α (which still has marginals given by
x). Then the identity function φ would be valid because R(x) would
always be in I , and we would have Pr[i ∈ φ(R(x)) | i ∈ R(x)] = 1
for that choice of φ. So the value of the primal would be 1 if we
allowed a correlated distribution on R(x) with marginals x.

6 Constructing CRs
Theorem 8. For any matroid on n elements and b ∈ [0, 1], there is

a
(
b,

1−(1− b
n )

n

b

)
-balanced contention resolution scheme for the

associated polytope PI .

The proof is essentially that, first, the greedy algorithm for max-
weight independent sets works for matroids (and is monotone); and
second, a correlation gap result.

The knapsack independence system is constructed as follows:
The items have sizes a1, . . . , an ∈ [0, 1] and we have a single
knapsack constraint, so the resulting feasible sets are F = {S :∑
i∈S ai ≤ 1}. Naturally it is downward closed, and nicely the

polytope PF = {x ∈ [0, 1]N :
∑
i aixi ≤ 1}.

Theorem 9. There is a monotone (b, 1− 2b)-balanced CR scheme
for the knapsack polytope, and also some better schemes when given
guarantees on the sizes of the items.

The CI scheme is to randomly draw a setR(x), order by size from
largest to smallest, and output the longest prefix of this ordering that
fits in the knapsack.

7 Unified Continuous Greedy
Let us briefly overview Feldman et al. [2011], “A Unified Continuous
Greedy Algorithm for Submodular Maximization”. The paper in a
sense follows up on contention resolution, mainly by solving step
(1) (optimize the multilinear extension) better.

The algorithm is called measured continuous greedy. The idea
is to modify continuous greedy by shrinking the direction of move-
ment according to the (discrete) gradient of F at the current point
y. Specifically, given a polytope and a current timestep, we first
greedily solve for x = argmax{w(y) · x : x ∈ P} where w(y)
is a “discrete gradient”, w(y)e = F (y ∧ 1e) − F (y). Then each
coordinate xe is decreased to xe(1 − ye). You can think of this
decreasing as reweighting w to look more like a gradient.

For a submodular f (not necessarily monotone) with a “down-
closed solvable polytope” constraint, stopping at time T = 1 guar-
antees feasibility and has an approximation ratio of 1/e− o(1). If f
is monotone, we get 1− 1/e− o(1).

Note that this paper proves these approximation ratios in terms
of F (x) for the solution x we find, so for instance F (x) ≥ (1/e−
o(1))f(OPT ). One can then use contention resolution schemes,
but for matroid constraints, it is better to use pipage rounding which
suffers no loss at all. It turns out that pipage rounding works both for
monotone and non-monotone f (due to Vondrák [2013]). So we get
f(S) ≥ (1/e−o(1))f(OPT ) and f(S) ≥ (1−1/e−o(1))f(OPT )
respectively.

One interesting point is that with this method, we don’t have to
stop at time T , and the paper gives a lot of results for cases where
we know something more about the polytope and can stop later to
get a better solution.
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