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We recap the paper [1], which covers the maximisation of general submodular and non-negative functions
without constraints. The main contribution of this paper is to show that non-monotone submodular functions
can also be optimized (albeit not with the standard greedy algorithm) as well as providing interesting lower
bounds. The paper also treats symmetric submodular functions as a special case. We recall the definition
below:

Definition 1. Let X be the universe of all elements. For any set A ⊆ X, we define Ā to be the complement
of A in X. A symmetric function takes the same value on A and Ā for all A ⊆ X.

1 Upper bounds

1.1 Random Set Algorithm

Let X be the universe of all elements. For any set A ⊆ X, we define A(p) ≡ {x ∈ A : rand(x) > p} where
rand(x) is an independent biased coin of parameter p.

return uniformly random subset of X: X(1/2)
Algorithm 1: Random Set Algorithm

To prove guarantees on this algorithm, we are going to prove two lemmas.

Lemma 1. Let f be a submodular function and A ⊆ X. Then:

E[f(A(p))] ≥ (1− p)f(∅) + pf(A)

Proof. This can be easily interpreted as the concavity of the multilinear extension of a submodular function
along positive directions. It can also be proved by a simple induction on the size of A by taking the
expectation of:

g(A ∪ {x}(p))− g(A(p)) ≥ g(A ∪ {x}(p) ∪A)− g(A)

Note that for this property to hold for non-monotone submodular functions, we have to couple A ∪ {x}(p)
and A(p).

The above lemma can be generalized to union of sets by simple induction:

Lemma 2. Let f be a submodular function and A,B ⊆ X not necessarily disjoint, then:

E[f(A(p) ∪B(p))] ≥ (1− p)(1− q)f(∅) + p(1− q)f(A) + (1− q)f(B) + pqf(A ∪B)

Proof. Condition on A(p) = R, apply the previous lemma to the submodular function gR : B 7→ g(R ∪ B).
Take the expectation of the previous expectations to remove the conditioning on A(p) = R by iterated
expectations. Apply the lemma again.

Theorem 1. The random set is a 1/2-approximation algorithm for unconstrainted maximisation of non-
negative symmetric functions and a 1/4-approximation for general non-negative submodular functions.
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Proof. Let C be the optimal set. We can write C = C(1/2) ∪ C̄(1/2). We apply the second lemma:

E[f(R)] = 1/4f(∅) + 1/4f(S) + 1/4f(S̄) + 1/4f(X)

Since f is non-negative, we get the results. Observe that for symmetric functions, f(S) = f(S̄)

Note that the 1/2 approximation cannot be improved (though it can be made deterministic) for symmetric
non-negative submodular functions.

1.2 Deterministic Local Search

Let ε > 0. We define α ≡ ε/n2.

S = {v} where v ∈ arg maxv f({v});
while ∃a ∈ S̄ : f(S ∪ {x}) > (1 + ε/n2)f(S) do

S ← S ∪ {x};
while ∃a ∈ S : f(S\{x}) > (1 + ε/n2)f(S) do

S ← S\{x};
end

end
return arg max(f(S), f(S̄))

Algorithm 2: Randomized Local Search

We can improve the approximation ratio for general functions to 1/3 and make the 1/2 approximation
ratio deterministic. Recall the definition of (1 + α)-approximate local optimum:

Definition 2. S is a (1 + α)−approximate local optimum if ∀x ∈ X : (1 + α)f(S) ≥ f(S ∪ {x}) and
∀x ∈ X : (1 + α)f(S) ≥ f(S\{x})

We have the following interesting lemma for locally optimal sets:

Lemma 3. If S is a (1+α)-locally optimal set, then for all its subsets and supersets I: f(I) ≤ (1+nα)f(S)

Proof. Consider a subset I of S and the collection of sets Ti such that Ti ⊂ Ti+1 and T0 = I and Tl = S.
By submodularity and local approximality of S:

f(Ti)− f(Ti−1) ≥ f(S)− f(S\{ai}) ≥ −αf(S)

By summing up these inequalities, we get f(S)− f(I) ≥ −lαf(S) ≥ −nαf(S). The method for all supersets
of S is identical.

Theorem 2. The local-search algorithm is a 1/3-approximation algorithm for maximising nonnegative sub-
modular functions and a 1/2-approximation algorithm for maximising nonnegative symmetric submodular
functions.

Proof. Let C be the optimal solution and S the solution returned by the algorithm. Note that S ∪ C and
S ∩ C are respectively subsets and supersets of S. Since S is (1 + α)-locally optimal set, we have:

2(1 + nα)f(S) + f(S̄) ≥ f(S ∩ C) + f(S ∪ C) + f(S̄)

≥ f(S ∩ C) + f((S ∪ C) ∩ (S̄)) + f((S ∪ C) ∪ (S̄))

≥ f(S ∩ C) + f(C\S)

≥ f(C)

where we use submodularity and nonnegativity twice. We get the desired conclusion (recall that we return
arg max(f(S), f(S̄))). We can bound the running time of the algorithm by noticing that the value of the
algorithm increases by a factor of at least (1 + ε/n2). Note that f(C) ≥ nf({v}) and therefore if k is the

number of iterations of the algorithm, then we have (1 + ε/n2)
k
< n =⇒ k < 1

εn
2 log n
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1.3 Smooth Local Search

Fix δ, δ′ ∈ [−1, 1]. Let p ≡ 1+δ
2 and q ≡ 1−δ

2 . In the algorithm, we are going to define an estimate of the
following derivative, called the weight of an element:

wA,δ ≡ E[f(A(p) ∪B(q) ∪ {x})]− E[f(A(p) ∪B(q)\{x})]

In the algorithm, we suppose we can obtain an estimate of wA,δ in polynomial time by random and
uniform sampling. Furthermore, we will compare this estimate to OPT , which we will also estimate within
a constant factor using local-search (for example).

A ≡ ∅;
while ∃a ∈ S̄ : wA,δ > 2OPT/n2 do

S ← S ∪ {x};
while ∃a ∈ S : wA,δ < −2OPT/n2 do

S ← S\{x};
end

end

return A random set from A( 1+δ′

2 ) ∪B( 1−δ′
2 )

Algorithm 3: Smooth Local Search

Theorem 3. Smooth Local Search runs in polynomial time. If we run SLS for two choices of parameters
and return the maximal set, then the better of the two solutions has expected value at least 2/5OPT.

The proof is a little bit hard to synthesize and does not give much intuition. See paper for full details.

2 Lower Bounds

2.1 NP-hardness result

Theorem 4. There is no polynomial-time algorithm (5/6 + ε)-approximation algorithm to maximize a non-
negative symmetric submodular function in succinct representation, unless P = NP .

Proof. Consider an instance of MAx E4-Lin2, i.e a system of m equations on 4 boolean variables each,
possibly shared amongst the equations, such that each equation is True if exactly half the variables are True.
For each variable xi, we define two values Ti and Fi (True or False) and we consider the universe of all
possible truth values of each variable ∪xi

{Ti, Fi}
Let e be one equation from the m considered on variables {xi, xj , xk, xl}. For any set of this universe S,

we define S′ ≡ S ∩ {Ti, Fi, Tj , Fj , Tk, Fk, Tl,Kl}. We say that an assignment S′ is valid if each variable has
exactly one truth value Ti OR Fi. Consider the possible cases:

1. S′ is not a valid assignment

(a) |S′| < 4, ge(S) = |S′|.
(b) |S′| > 4, ge(S) = 8− |S′|
(c) |S′| = 4, ge(S) = 10/3

2. S′ is a valid assignment.

(a) Exactly half the variables are set to True. ge(S) = 4

(b) Not exactly half the variables are set to True. ge(S) = 8/3
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It can be verified that the function is submodular. Without loss of generality, we show that the optimal
set S has exactly one truth value for each variable. Let S̃ be an optimal set with mutliple or no truth values
for certain variables, which we call undecided. For each undecided variable, sample a truth value (from Ti,
Fi) uniformly at random. Consider S the random set obtained. For each equation e, S will induce a valid
assignment which satisfies e.

Consider f(S) ≡
∑
e ge(S). f is submodular. For all equations with a valid assignment, the value will not

change. For all equations without a valid assignment, the expected value of ge(S) will be 1/2(8/3+4) = 10/3,
which is at least the value fo any invalid assignment. Therefore, E[f(S)] ≥ 10/3 and by the probabilistic
method, there exists an optimal set S which assigns a valid assignment to every equation. The optimal value
of f is therefore: f(S) = 8/3(m − r) + 4r = 8/3m + 4/3r where r is the maximum number of satisfiable
equations.

Since it is NP-hard to distinguish whether r > (1−ε)m or r < (1/2−ε)m, it is also NP-hard to distinguish
whether OPT ≥ (4− ε)m and OPT ≤ (10/3 + ε)m

This result can be improved in the case of general submodular functions:

Theorem 5. There is no polynomial time (3/4 + ε)-approximation algorithm to maximize a nonnegative
submodular function in succinct representation unless P = NP .

The proof relies on non-trivial properties of Hastad’s PCP classifier, which we will not cover in these
notes, but which will be most likely covered in later sections of this reading group. [2].

2.2 Value Query Complexity Results

We begin with the following proposition, which is not very interesting by itself, but the conclusion reached
in the proof is interesting as explained below.

Proposition 1. For any δ > 0, there exists ε > 0 such that for any (random) sequence of queries Q ⊆
2X , |Q| ≤ 2εn, there exists a nonnegative submodular function such that with high probability for all queries:

f(Q) ≤ (1/4 + δ)OPT

Proof. (sketch) We use the probabilistic method and consider cuts on the complete bipartite directed graph
on (C,D). We fix the queries and choose a uniformly random C ⊆ X

fC(S) = |S ∩ C| · |S̄ ∩D|

It is easy to see that n2 is the optimum obtained for S ≡ C. However, most queries will intersect both sets
and the value will be concentrated around 1/4OPT. We use Chernoff bounds followed by a union bound.
For any set A of size a:

P(|A ∩ C| > 1/2(1 + δ)|A|) = P(|A ∩ C| < 1/2(1− δ)|A|) < e−δ
2a/2

Make the following observations:

• With very high probability, the value of C will be in [(1/2− δ)n, (1/2 + δ)n]. If this is true:

• OPT ≥ ( 1
4 − δ

2)n2

• Q has to be of size ∈ [ 1
16n, n−

1
16n] for it to be “high enough”.

• Both |A ∩ C| > 1/2(1 + δ)|A| and |A ∩ C| < 1/2(1 − δ)|A| have to occur for the query to be “high
enough”.

• This happens with very small probability. Conclusion by union bound on all queries.
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As a result, we never observe a very high value. We could still learn enough from the queries to maximize
the function correctly. The main conclusion from this example is that when considering cut functions of a
complete directed graph, most sets are very “balanced” and we will never observe a high value. This provides
the intuition for the following proof.

Theorem 6. For any ε > 0 there are instances of nonnegative symmetric submodular maximization such
that there is no (adaptive, possibly randomized) algorithm using less than eε

2n/16 queries that always finds a
solution of expected value at least (1/2 + ε)OPT

Proof. When unambiguous, let k ≡ |S ∩ C| and l ≡ |S ∩D|. Define f as follows:

1. f(k, l) ≡ (k + l)(n− k − l) = |S|(n− |S|) when |k − l| < εn (the set is said to be balanced).

2. f(k, l) ≡ k(n − 2l) + (n − 2k)l − O(εn2) (the set is unbalanced). The precise value of O(εn2) will be
specified later, and will allow to make the function smooth and submodular.

What we note is that a balanced set provides no information about the sets C and D. Using the intuition
developped during the previous proposition, we see that with high probability we will never get an unbalanced
set. As such, we cannot distinguish our function f from the submodular function S 7→ |S|(n − |S|), which
has an optimum of 1

4n
2 whilst our function has an optimum of 1

2n
2.

All that remains to show is that we can choose O(εn2) such that our function f is submodular. See paper
for full details.
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