
Reading notes: A Tight Linear Time (1/2)-Approximation for

Unconstrained Submodular Maximization

Eric Balkanski

April 12, 2015

1 Introduction

Last meeting, we studied the submodular maximiza-
tion paper of Feige et al. [1] where the submodular
function f over a ground set N = {u1, . . . , un} is non-
negative, unconstrained, and not necessarily mono-
tone. The main technique used was local search. In
these reading reading notes, we explore the paper of
Buchbinder et al. [2], which studies submodular max-
imization in an identical setting and improves on the
results of Feige et al. [1] by using an adaptation of
the greedy approach. These results are summarized
in the table below.

Feige et al. [1] Buchbinder et al. [2]

Approx. Runtime Approx. Runtime

Deterministic 1
3 −

ε
n O(1εn

3 log n) 1
3 O(n)

Randomized 2
5 −

9
5n O(n2) 1

2 O(n)

The classical greedy algorithm in submodular max-
imization repeatedly adds the element which maxi-
mizes the marginal contribution to the current so-
lution where we start with our solution being the
empty set. This approach is effective in the case of
monotone submodular maximization by adapting it
for different type of constraints. However this greedy
algorithm performs poorly with non-monotone sub-
modular functions. In these reading notes, by greedy
algorithm, we will refer to a slightly different algo-
rithm. The greedy algorithm that we will be inter-
ested about is the algorithm that starts with a solu-
tion being the empty set, then goes through all the
elements one by one, and adds the current element
to the current solution if the marginal contribution
of the current element to the current solution is posi-
tive. This greedy algorithm can also perform poorly,
but we will explore an adaptation of this greedy ap-
proach with surprisingly good guarantees. Consider
a similar algorithm to this greedy algorithm that

starts with a solution consisting of all the elements,
and then goes through all the elements one by one,
and removes the element from the current solution
is its marginal contribution to the current solution is
negative. We call this algorithm reverse greedy.

The main idea is to combine greedy and reverse
greedy by running both of them concurrently. When
going through the elements one by one and when con-
sidering an element, information from both greedy
and reverse greedy is used to decide whether to add
that element to the solution or not. Two algorithms
that use this idea are presented: a deterministic and
a randomized algorithm.

2 The Deterministic Algorithm

DeterministicUSM (USM standing for Unconstrained
Submodular Maximization) is described formally as
Algorithm 1. Initially the solutions are X0 = ∅ for
the greedy algorithm and Y0 = N for the reverse
greedy algorithm. The algorithm goes through each
element one by one. At the ith iteration, when con-
sidering element ui, ai is the marginal contribution
of adding ui to Xi−1 and bi is the marginal contri-
bution of removing ui from Yi−1. The main step of
the algorithm is then to compare ai and bi and to
decide whether ui should be in our solution based on
this comparison. We then update Xi and Yi based
on this decision and therefore get Xn = Yn as the
final solution.

We first make observations about Xi and Yi:

• Xi ∪ {i + 1, i + 2, . . . , n} = ∅

• Yi ∩ {i + 1, i + 2, . . . , n} = {i + 1, i + 2, . . . , n}

• Xi ⊆ Yi

• Xn = Yn

1



Algorithm 1 DeterministicUSM(f,N)

1: Start with X0 = ∅ and Y0 = N
2: for i = 1 to n do
3: Let ai = f(Xi−1 ∪ {ui})− f(Xi−1)
4: Let bi = f(Yi−1 \ {ui})− f(Yi−1)
5: if ai ≥ bi then:
6: Let Xi = Xi−1 ∪ {ui}, Yi = Yi−1
7: else: Xi = Xi−1, Yi = Yi−1 \ {ui}
8: end if
9: end for

10: Return Xn

The first lemma shows that the solution that we
are building improves at every step: we show that
ai + bi ≥ 0 for all i, which implies that either ai ≥ 0
or bi ≥ 0.

Lemma 1. For every i, ai + bi ≥ 0.

Proof. Observe that

• (Xi−1 ∪ {ui}) ∪ (Yi \ {ui}) = Yi−1

• (Xi−1 ∪ {ui}) ∩ (Yi \ {ui}) = Xi−1

Therefore,

ai + bi = (f(Xi−1 ∪ {ui}) + f(Yi \ {ui}))
− (f(Xi−1) + f(Yi−1)) ≥ 0

where the inequality holds by submodularity.

Let OPT be an optimal solution and OPTi =
(OPT ∪Xi) ∩ Yi. OPTi will be the crucial sequence
of sets that we will use through the analysis. An
alternative way to define OPTi is that it is the set
that coincides with Xi and Yi on 1, . . . , i and coin-
cides with OPT in i + 1, . . . , n. The following are
useful properties about OPTi:

• OPT0 = OPT

• OPTn = Xn = Yn

• Xi ⊆ OPTi ⊆ Yi (useful for submodularity)

Since OPT0 = OPT and OPTn is the solution re-
turned by the algorithm, we are going to analyze the
sequence f(OPT0), ·, f(OPTn) and bound the loss in
value along that sequence.

Lemma 2. For all i, f(OPTi−1)−f(OPTi) ≤ [f(Xi)−
f(Xi−1)] + [f(Yi)− f(Yi−1)].

Assuming Lemma 2 holds, we show that the al-
gorithm is a 1/3 approximation.

Theorem 1. The approximation guarantee from Al-
gorithm 1 is 1/3.

Proof. Observer that

f(OPT0)− f(OPTn) (1)

=
n∑
i=1

f(OPTi−1)− f(OPTi) (2)

≤
n∑
i−1

[f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)] (3)

= f(Xn)− f(X0) + f(Yn)− f(Y0) (4)

= f(Xn) + f(Yn) (5)

where (2) and (4) follows from telescoping sums, (3)
from Lemma 2, and (5) from f(X0) and f(Y0) being
non negative. We conclude the proof by noting that
the algorithm returns OPTn = Xn = Yn.

It remains to prove Lemma 2.
Proof of Lemma 2. Assume that ai ≥ bi (the case

bi > ai follows similarly), so

• Xi = Xi−1 ∪ {ui}

• Yi = Yi−1

• OPTi = OPTi−1 ∪ {ui}

We therefore need to show that f(OPTi−1)−f(OPTi) ≤
f(Xi)− f(Xi−1) = ai. There are two cases.

If ui ∈ OPTi−1, then f(OPTi−1) − f(OPTi−1 ∪
{ui}) = 0 ≤ ai since ai ≥ 0 by Lemma 1.

If ui 6∈ OPTi−1. Then by submodularity,

f(OPTi−1)− f(OPTi−1 ∪ {ui})
≤ f(Yi−1 \ {ui})− f(Yi−1)

= bi ≤ ai

The authors also note that a 1/3-approximation
is tight for this algorithm, we skip the proof of that
result.

3 The Randomized Algorithm

The 1/3-approximation of DeterministicUSM is im-
proved to 1/2 with a randomized version of the algo-
rithm called RandomizedUSM, described formally as
Algorithm 2, and very similar to the deterministic al-
gorithm. The intuition behind why this randomized

2



algorithm performs better than the deterministic one
is the following. In the case where ai and bi are both
positive and almost equal, then both the decision of
picking ui or of rejecting ui could be a good decision
and we do not want to commit to either. By ei-
ther picking it or rejecting it with some probability,
we keep the doors open to both possibilities, which
makes the decision ”smoother”.

Algorithm 2 RandomizedUSM(f,N)

1: Start with X0 = ∅ and Y0 = N
2: for i = 1 to n do
3: Let ai = f(Xi−1 ∪ {ui})− f(Xi−1)
4: Let bi = f(Yi−1 \ {ui})− f(Yi−1)
5: Let a′i = max{ai, 0}, b′i = max{bi, 0}
6: Let r = 1 with probability a′i/(a′i + b′i)
7: if r = 1 then:
8: Let Xi = Xi−1 ∪ {ui}, Yi = Yi−1
9: else: Xi = Xi−1, Yi = Yi−1 \ {ui}

10: end if
11: end for
12: Return Xn

We use the same notation for the analysis as for
the deterministic algorithm. The equivalent Lemma
for this algorithm to Lemma 2 is the following:

Lemma 3. For all i, E[f(OPTi−1)− f(OPTi)] ≤
1
2E[[f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)]].

Assuming Lemma 3 holds, this algorithm is a 1/2
approximation.

Theorem 2. The approximation guarantee from Al-
gorithm 1 is 1/2.

The proof of Theorem 2 follows similarly as the
proof of Theorem 1. We now prove Lemma 3.

Proof of Lemma 3. We condition on Xi−1 =
Si−1 ⊆ {u1, . . . , ui−1} and show that the result holds
for any such Si−1. From this conditioning, the fol-
lowing variables become constants:

• Yi−1 = Si−1 ∪ {ui, . . . , un}

• OPTi−1 = Si−1 ∪ (OPT ∩ {ui, · · · , un})

• ai and bi

By Lemma 1, it cannot be the case that ai < 0
and bi < 0. There are three other cases. If ai ≥ 0
and bi ≤ 0: then,

• r = 1 with probability 1

• Yi = Yi−1 = Si−1 ∪ {ui, . . . , un}

• Xi = Si−1 ∪ {ui}

• OPTi = OPTi−1 ∪ {ui}

We need to show that f(OPTi−1)−f(OPTi) ≤ 1
2(f(Xi)−

f(Xi−1)) = ai/2. There are two subcases, if ui ∈
OPTi−1 then f(OPTi−1)− f(OPTi) = 0 while ai ≥
0. If ui 6∈ OPTi−1, then by submodularity,

f(OPTi−1)− f(OPTi−1 ∪ {ui})
≤ f(Yi−1 \ {ui})− f(Yi−1)

= bi ≤ 0 ≤ ai/2

If ai < 0 and bi ≥ 0, then the proof follows simi-
larly as the previous case. The only case that remains
is therefore ai ≥ 0 and bi ≥ 0. So a′i = ai and b′i = bi
and,

E[[f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)]]

=
ai

ai + bi
(f(Xi−1 ∪ {ui})− f(Xi−1))

+
bi

ai + bi
(f(Yi−1 \ {ui})− f(Yi−1))

=
a2i + b2i
ai + bi

On the other hand,

E[f(OPTi−1)− f(OPTi)]

=
ai

ai + bi
(f(OPTi−1)− f(OPTi−1 ∪ {ui}))

+
bi

ai + bi
(f(OPTi−1)− f(OPTi−1 \ {ui}))

We claim that ai
ai+bi

(f(OPTi−1) − f(OPTi−1 ∪
{ui}))+ bi

ai+bi
(f(OPTi−1)−f(OPTi−1\{ui})) ≤ aibi

ai+bi
.

As previously, we have two cases. If ui 6∈ OPTi−1,
then bi

ai+bi
(f(OPTi−1)− f(OPTi−1 \ {ui})) = 0 and

by submodularity,

f(OPTi−1)− f(OPTi−1 ∪ {ui})
≤ f(Yi−1 \ {ui})− f(Yi−1)

= bi

Otherwise, ui ∈ OPTi−1. Then, ai
ai+bi

(f(OPTi−1) −
f(OPTi−1 ∪ {ui})) = 0 and by submodularity,

f(OPTi−1)− f(OPTi−1 \ {ui})
≤ f(Xi−1 ∪ {ui})− f(Xi−1)

= ai

Finally, since 1
2
a2i+b

2
i

ai+bi
≥ aibi

ai+bi
, this concludes our

proof.

3



4 Conclusion

This paper improves on previous bounds for max-
imization of non-negative, unconstrained, and not
necessarily monotone submodular functions. The main
idea is to run two versions of the algorithms, one
which start with the empty set and one which starts
with the ground set and to combine information from
both of the greedys when going through elements.
The authors also show that this same idea can be ap-
plied to obtain a 3/4 approximation for the problems
of Submodular Max-SAT and Submodular Welfare
with 2 players. These approximation match the best
known approximation ratios for these problems, but
the runtime of these new algorithms is linear time.

References

[1] Uriel Feige, Vahab S Mirrokni, and Jan Von-
drak. Maximizing non-monotone submodular
functions. SIAM Journal on Computing, 40(4):
1133–1153, 2011.

[2] Niv Buchbinder, Moran Feldman, Joseph Naor,
and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular
maximization. In Foundations of Computer Sci-
ence (FOCS), 2012 IEEE 53rd Annual Sympo-
sium on, pages 649–658. IEEE, 2012.

4


