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that it can attain on an input instance is the approximation ratio of the algorithm. Formax k-cover, we consider the ratio between the number of points covered by the k subsetsselected by the algorithm and the number of points covered by the optimal solution. Thisratio is always at most one, and the smallest value that it can attain on an input instanceis the approximation ratio of the algorithm. (Slighly extending the class of algorithms ofinterest, we also allow for randomized polynomial time algorithms, in which case we wantthe solution output by the algorithm to be close to optimal with high probability, whereprobability is computed over the coin tosses of the randomized algorithm.) It is well knownthat set cover can be approximated within a ratio of lnn, where ln denotes the naturallogarithm, and that max k-cover can be approximated within a ratio of 1 � 1=e ' 0:632.The results and techniques in [1, 28] imply that there is a constant � < 1 such that it is NP-hard to approximate max k-cover within a ration better than �. Lund and Yannakakis [26]showed (under a complexity assumption that will be presented in Section 1.1) that it ishard to approximate set cover within a ratio of (logn)=2, where log denotes logarithms inbase 2. We extend these hardness results, and show that for any � > 0, set cover cannotbe approximated within a ratio of (1� �) lnn unless NP has nO(log logn)-time deterministicalgorithms, and that max k-cover cannot be approximated within a ratio of 1 � 1=e + �unless P=NP. This implies that known approximation algorithms for these problems areessentially best possible in terms of the approximation ratios that they guarantee. In allinstances of set cover and max k-cover that we construct, s (the number of subsets) issmaller than n (the number of points). Our results are based on a reduction from a newmulti-prover proof system for NP (see Section 2), designed speci�cally for this purpose. Ourproof technique extends that of [26].1.1 Related workSet cover was among the �rst problems for which approximation algorithms were analysed.Johnson [23] showed that the greedy algorithm gives an approximation ratio of ln n. (Thiswas extended by Chvatal [7] to the weighted version of set cover.) Lovasz [24] showed thata linear programming relaxation approximates set cover within a ratio of lnn. In bothcases, the authors were interested mainly in the leading term of the approximation ratio.Analysis of the low order terms of the approximation ratio was provided by Srinivasan [34](for the linear programming approach) and by Slavik [33] (for the greedy algorithm). Formax k-cover, the greedy algorithm gives an approximation ratio of 1� 1=e (up to low orderterms). See [20] and references therein, and also Proposition 11. (A similar approximationratio can be obtained via a linear programming relaxation, though the author is not awareof an explicit reference for this.)The �rst hardness of approximation results for set cover followed from work on prob-abilistically checkable proof systems (PCPs). The notion of PCPs grew out of the theory2



of interactive proofs [14, 4, 6, 13] (parts of which we will review shortly) and from majorbreakthroughs in understanding their power [25, 32, 3]. The relevance of interactive proofsfor proving hardness of approximation results was demonstrated in [9], and further devel-opments in [2, 1] led to the PCP notion as stated below. Informally, a PCP for an NPlanguage is a method of encoding NP witnesses, coupled with a veri�er { a very e�cientrandomized method for verifying the validity of the witness. For any instance of the inputlanguage, the veri�er reads only a constant number of bits from the corresponding PCPwitness. The indices of these bits depend on random coin tosses of the veri�er and on theinput instance. The veri�er accepts or rejects based on a simple predicate evaluated onthese bits. If the input instance is in the NP language, then there is a way of encoding thePCP witness such that regardless of the bits read by the veri�er, the veri�er accepts. If theinput instance is not in the NP language, then any string given as a PCP witness will beaccepted by the veri�er with probability at most 1/2 (probability taken over the coin tossesof the veri�er). The gap between the probabilities that the veri�er accepts inputs in theNP-language and inputs not in the NP-language is a key property that makes PCPs usefulin proving hardness of approximation results.As shown by Arora et.al. [1], the above PCP characterization of NP-languages (the\PCP theorem") is equivalent to the statement that it is NP-hard to approximate MAX3SAT, meaning that for some � < 1, it is NP hard to distinguish between satis�able 3CNFformulas and 3CNF formulas in which at most a �-fraction of the clauses can be satis�ed.This immediately implies constant factor hardness of approximation results for a variety ofother problems { all those that are MAX SNP-hard [28]. One of these problems is minimumvertex cover in bounded degree graphs, that is, selecting as few as possible vertices in agraph of bounded degree such that for each edge, at least one of its endpoints is selected.As vertex cover is a special case of set cover, this implies that for some � > 0, it is NP-hardto approximate set cover within a ratio of 1+ �. Using the fact that the graph is of boundeddegree, one can also show that it is NP-hard to approximate max k-cover within a ratio of1� �.To present subsequent hardness of approximation results, we let TIME(t) denote theclass of languages that have a deterministic algorithm that runs in time t, and let ZTIME(t)denote the class of languages that have a probabilistic algorithm that runs in expected timet (with zero error). We shall ignore low order terms in the approximation ratios presentedbelow.Lund and Yannakakis [26] showed that set cover cannot be approximated within a ratioof logn=4 unless NP � TIME(nO(polylog n)), and that set cover cannot be approximatedwithin a ratio of logn=2 unless NP � ZTIME(nO(polylog n)). Their proof was based on areduction from e�cient two prover proof systems for NP [6]. For our purposes, a two proverproof system can be described as a PCP with some special properties. The alphabet in which3



the PCP witness is encoded is no longer binary, and its cardinality may depend on the inputsize. The PCP witness is partitioned into two segments. The veri�er reads one characterfrom each segment (the choice of which character to read is based on the input instance andon random coin tosses of the veri�er), and accepts or rejects based on a predicate evaluatedon the two characters. More generally, one may view k-prover proof systems as PCPs inwhich the PCP witness is partitioned into k segments, and the veri�er reads one characterfrom each segment. In the terminology of multiprover proof systems [6], each segment of thePCP witness is thought of as being controlled by one prover. The contents of the segmentare called the strategy of the prover. Reading a character from a segment corresponds tothe veri�er querying the respective prover as to the value of the indexed character, and theprover responding with the value of the requested character. As each prover is queried onlyonce, our description corresponds to one round multiprover proof systems. More generalmultiround proof systems are also described in [6], but are beyond the scope of the currentpaper.Lund and Yannakakis obtained their hardness results for approximating set cover undercomplexity assumptions that are stronger than P 6= NP . In order to get hardness resultsunder weaker complexity assumptions, subsequent work focused on reducing the probabilityof falsely accepting in a multiprover proof system (this probability is known as the errorof the proof system), while maintaining small values for other parameters such as thenumber of provers, the cardinality of the alphabet and the number of random bits usedby the veri�er. Bellare et.al. [5] constructed four prover proof systems that implied thatunless P=NP set cover cannot be approximated within any constant ratio, and unlessNP � TIME(nO(loglogn)) then set cover cannot be approximated within a ratio of log n=8.Improved analysis of two prover proof systems by Raz [30] implies that unless NP �TIME(nO(log logn)) then set cover cannot be approximated within a ratio of logn=4, andthat unless NP � ZTIME(nO(log logn)) then set cover cannot be approximated within aratio of log n=2.Improved deterministic constructions by Naor et.al. [27] closed the gap (up to low orderterms) between the consequences achievable under the assumption that NP is not containedin a deterministic time class and the assumption that NP is not contained in a probabilistictime class. It follows that unless NP � TIME(nO(log logn)) then set cover cannot beapproximated within a ratio of logn=2.In our work we close the gap between the known lnn approximation ratio and thehardness result of logn=2. We show that the upper bound is tight (up to low order terms)under the assumption that NP 6� TIME(nO(loglogn)).There are only few NP optimization problems that are known to have a threshold ofnontrivial nature (e.g., not located at approximation ratio 1). A very sharp example is theminimum p-center problem, for which Hsu and Nemhauser [22] showed that it is NP-hardto obtain approximation ratios below 2, whereas Hochbaum and Shmoys [21], and Dyer4



and Frieze [8], showed how to approximate minimum p-center within a factor of 2. Forthe minimum maximal independent set problem, Halldorsson [16] shows that it cannot beapproximated within a ratio of n1��, for any � > 0, which is tight up to multiplicative loworder terms. Another example of a well characterized approximation problem is presentedin [19]. Our work shows that also set cover and max k-cover have a threshold of a nontrivialnature. This can be extended to other problems as well, as the same threshold of lnn holdsfor all problems that are equivalent to set cover in terms of approximation ratio, such asdominating set (see [29] and [26] for more details).A survey of hardness of approximation results and the techniques involved is providedby Arora and Lund in [20].Remark: A preliminary version of this paper, without the results on max k-cover,appeared in the Proceedings of the 28th Annual ACM Symposium on the Theory of Com-puting, 1996. Since then, several other thresholds for approximation were discovered. Es-sentially tight O(n1��) hardness of approximation results where obtained for clique andindependent set [17], and for chromatic number [11]. Tight constant factor hardness ofapproximation results were obtain for several problems in [18], including a threshold of 7=8for MAX 3SAT. As for set cover, Raz and Safra [31] constructed new low error constantprover proof systems and used them to show that for some constant c > 0, it is NP-hardto approximate set cover within a ratio of c logn. It is not known whether hardness ofapproximating set cover within a ratio of ln n (up to low order terms) can be shown underthe assumption that P 6= NP , rather than NP 6� TIME(nO(log logn)).1.2 OverviewWe give a high level overview of the main ideas in our proof that set cover is hard toapproximate within a ratio of lnn. The proof that max k-cover is hard to approximatewithin a ratio of 1� 1=e is based on similar ideas.The proof of Lund and Yannakakis involves a combinatorial construction, and a reduc-tion from two prover proof systems to set cover which uses the combinatorial construction.The ratio of log n=2 comes up from the following construction. There is a set S ofm points,and a collection F of subsets of S and their complements, each of size m=2. A good way ofcovering S is by taking a subset and its complement, thus using only two subsets. The com-binatorial construction is such that any bad cover of S that does not include a subset andits complement must use at least roughly logm subsets from F . Hence the ratio betweenthe good case and the bad case is logm=2. We remark that a combinatorial constructionwith properties as described above is easy to come by: standard probabilistic argumentsshow that if the subsets in F are chosen at random, then with high probability every badcover requires at least roughly logm subsets, as desired. Lund and Yannakakis showed howto reduce two prover proof systems for satis�ability of a formula � to a collection of sets as5



described above, such that if � is satis�able, all sets are covered by the good way, and if �is not satis�able, most sets need to be covered by the bad way.To prove a ln n ratio, we consider a modi�ed construction which we call a partitionsystem. There is a set S of m points, and a collection F of subsets of S, each of sizem=k, where k is a large constant. Each subset is associated with k � 1 other pairwisedisjoint subsets of size m=k that together partition S into k equal parts. A good cover ofS by disjoint subsets requires only k subsets. A bad cover needs roughly d subsets (notbelonging to the same partition) in order to cover S, where (1� 1=k)d ' 1=m. As k grows,d tends to k lnm. The ratio between the two cases approaches lnm, as desired. Again, aconstruction based on random subsets of size m=k will with high probability have propertiesas described above.To make use of the above setting, we design a new k-prover proof system for satis�ability.We remark that already in [5] hardness results for set cover were proved using k-prover proofsystem, where k = 4. However, these hardness results gave poorer bounds on the ratio ofapproximation than those obtainable from two prover proof systems. The reason why weobtain stronger bounds is that we introduce a new ingredient into k-prover proof systems{ that of having two di�erent acceptance predicates, a strong acceptance predicate, and aweak acceptance predicate. In our proof system, the di�erence between the case when � issatis�able and the case when � is not satis�able is not only in the acceptance probability,but also in the acceptance predicate. If � is satis�able, the provers have a strategy thatalways satis�es the strong acceptance predicate (and hence also the weak one). If � isnot satis�able, then any strategy of the provers satis�es the weak acceptance predicate ononly a small fraction of the possible queries of the veri�er. The gap that we obtain forapproximating set cover is due in part to the di�erence in acceptance probability betweenthe cases that � is satis�able and � is not satis�able, and in part to the di�erence inacceptance predicate.In Section 2 we describe our k-prover proof system. It is fortunate that we can invoke arecent theorem of Raz [30] regarding reduction of error by parallel repetition. In contrast,Lund and Yannakakis used the more complicated two prover proof system of Feige andLovasz [12] (the result of [30] was not available at the time), without actually describing it.In Section 3 we explain how to construct the partition systems mentioned above. InSection 4 we describe the reduction from our k-prover proof system to set cover. In Section 5we show that max k-cover has an approximation threshold at 1� 1=e under the assumptionthat P 6= NP . In Section 6 we analyze the low order terms for hardness of approximationfor set cover. Under the assumption that NP 6� ZTIME(2n�) for some � > 0, we showthat set cover cannot be approximated within ln n � c(ln ln n)2, for some constant c thatdepends on �. 6



2 A multi-prover proof systemOur result is based on a reduction from a multi-prover proof system. In Section 2.1 wedescribe the NP-hard problem MAX 3SAT-5 for which we construct the multiprover proofsystem. This speci�c problem has a regular structure that will later be used in proving thehardness of approximating set cover. In Section 2.2 we use standard techniques to constructa low error two prover proof system for MAX 3SAT-5. In Section 2.3 we construct our k-prover proof system for MAX 3SAT-5. This proof system has the new feature of having twodi�erent acceptance predicates, which is used in proving the hardness of approximating setcover. We remark that the two prover proof system of Section 2.2 is presented only so asto provide intuition and help in the analysis of the �nal k-prover proof system, and is notused elsewhere in our paper.2.1 The underlying NP-complete languageOur starting point is the problem of MAX 3SAT-B.Input: A CNF formula with n variables in which every clause contains at most threeliterals (a literal is a Boolean variable in either positive or negated form), and every variableappears in a bounded number of clauses.Output: The maximum number of clauses that can be satis�ed simultaneously by someassignment to the variables.The following well known theorem appears in [1, 28].Theorem 1 It is MAX-SNP hard to approximate MAX 3SAT-B: for some � > 0, it is NP-hard to distinguish between satis�able 3CNF-B formulas, and 3CNF-B formulas in whichat most an (1� �)-fraction of the clauses can be satis�ed simultaneously.We would like to work with 3CNF-B formulas that have a very regular structure, andhence de�ne the problem of MAX 3SAT-5.Input: A CNF formula with n variables and 5n=3 clauses, in which every clause containsexactly three literals, every variable appears in exactly �ve clauses, and a variable does notappear in a clause more than once.Output: The maximum number of clauses that can be satis�ed simultaneously by someassignment to the variables.Proposition 2 For some � > 0, it is NP-hard to distinguish between satis�able 3CNF-5formulas, and 3CNF-5 formulas in which at most a (1 � �)-fraction of the clauses can besatis�ed simultaneously. 7



Proof: The proof uses known techniques, and is only sketched below. It is based on thehardness of approximating MAX 3SAT-B (Theorem 1). We change an arbitrary 3CNF-Bformula  to a new 3CNF-5 formula � (on a di�erent set of variables).Consider any variable x and let b be the number of occurrences of x in  . b is boundedfrom above by some universal constant, and w.l.o.g, we also assume that b � 2. Replaceeach occurrence of x by a fresh variable xi, for 0 � i � b � 1, and add the 2b clauses(xi _ �xi+1), (�xi _ xi+1), where i+ 1 is computed mod b. These clauses are satis�ed only ifxi = xi+1 for every i. Now each variable appears exactly 5 times, and no variable appearsmore than once in the same clause. For clauses that are shorter than three, add a freshdummy literal �y, and add the following clauses with additional dummy variables z1 and z2:(y _ z1 _ z2), (y _ �z1 _ z2), (y _ z1 _ �z2), and (y _ �z1 _ �z2). These clauses are satis�ed only ify = 1, in which case �y has no inuence on the original clause to which it was added. Add aconstant number of additional dummy variables wi so that the total number of variables (ofthe types xi, yi, zi, and wi) is divisible by 3, and add dummy 3-CNF clauses that containdistinct dummy variables zi and wi in positive form, until each dummy variable occursexactly �ve times.The above reduction has the following properties (proof left to the reader):1. The reduction takes polynomial time.2. If  is satis�able then so is �.3. The number of clauses increases by at most a constant multiplicative factor. (This isa consequence of the fact that each clause in  is of bounded length).4. The number of unsatis�able clauses decreases by at most a constant multiplicativefactor. (This is a consequence of the fact that each variable appears a boundednumber of times in  ).Properties 3 and 4 above imply that if a �-fraction of the causes of  are not satis�able,then an �-fraction of the causes of  are not satis�able, for some � that depends on �.Hence if one could distinguish in polynomial time between satis�able 3CNF-5 formulasand 3CNF-5 formulas in which at most a (1 � �)-fraction of the clauses can be satis�edsimultaneously, then one could distinguish in polynomial time between satis�able 3CNF-Bformulas and 3CNF-B formulas in which at most a (1 � �)-fraction of the clauses can besatis�ed simultaneously. 2Following the NP-hardness result of Proposition 2, we shall assume that the input tothe multiprover proof systems that we construct is either a satis�able 3CNF-5 formula (atrue input), or a 3CNF-5 formula in which every assignment to the variables fails to satisfyan �-fraction of the clauses, for some universal constant � > 0 (a false input).8



2.2 A two prover proof system for MAX 3SAT-5Using known techniques, we construct a one-round two-prover proof system for 3SAT-5. Inour two-prover proof system, the �rst prover receives as a query the index of a clause, andreturns as an answer a sequence of three bits (i.e., a value between 0 and 7). These threebits can be viewed as Boolean assignments to the three variables of the clause. The secondprover receives as a query the index of a variable, and returns one bit as an answer. Thisbit can be viewed as a Boolean assignment to the variable. The veri�cation procedure isas follows. The veri�er selects an index of a clause at random, sends it to the �rst prover,and selects a random variable in the clause, and sends its index to the second prover. Theveri�er interprets the reply of the �rst prover as an assignment to the three variables in theclause, and the reply of the second prover as an assignment to the variable selected fromthe clause. The veri�er accepts if the following two conditions hold:1. Clause check: the assignment sent by the �rst prover satis�es the clause.2. Consistency check: the assignment sent by the second prover is identical to theassignment for the same variable sent by the �rst prover.Proposition 3 Let � be a 3CNF-5 formula and let � be the fraction of unsatis�ed clausesin the assignment to the variables that satis�es the largest number of clauses. Then underthe optimal strategy of the provers, the veri�er in the above two prover proof system acceptswith probability (1� �=3).Proof: To see that regardless of the strategy of the provers the acceptance probabilityis at most (1 � �=3), observe that the strategy of the second prover de�nes an assignment� to the variables of �. When the veri�er selects a clause that is not satis�ed by � (thishappens with probability at least �), then in order to pass the clause check, the �rst provermust set at least one of the three variables di�erently from �, and then the consistencycheck fails with probability at least 1=3.A strategy that guarantees acceptance probability of at least (1� �=3) is to let � be anassignment that satis�es a (1 � �)-fraction of the clauses, and to have the �rst prover setexactly one variable di�erently from � for clauses not satis�ed by �. 2The probability of accepting a false input is known as the error of the two prover proofsystem. For the above two-prover proof system, the error may be as high as 1��=3. We nowmodify our construction so as to substantially lower the error. This is done via a methodknown as parallel repetition. Rather than choose at random one clause, the veri�er choosesat random ` clauses (the value of ` will be determined later). The indices of these ` clausesare sent to the �rst prover, who now replies with a sequence of 3` bits. From each clausethe veri�er chooses at random one variable, and sends the indices of the ` variables to the9



second prover. The second prover replies with a sequence of ` bits. The veri�er interpretsthe sequence of bits sent by the �rst prover as an assignment to the 3` variables that appearin the ` random clauses, and interprets the sequence of bits sent by the second prover as anassignment to the ` variables that were queried of the second prover. The veri�er accepts ifthe following two conditions hold for every one of the ` clauses: the assignment sent by the�rst prover satis�es the clause, and the assignment sent by the second prover is identical tothe assignment for the same variable sent by the �rst prover. Hence from the point of viewof the veri�er, the new proof system is composed of ` parallel repetitions of the originalproof system, where each repetition uses fresh random bits. As the veri�er accepts in themodi�ed proof system only if all repetitions are accepting, it is natural to expect that theerror of the modi�ed proof system will be at most (1��=3)`. Unfortunately, this is in generalnot true, due to subtle reasons that are best explained by explicit counter examples [13].However, it is true that parallel repetition reduces the error at an exponential rate. Thefollowing theorem was proven by Raz [30].Theorem 4 If a one round two prover proof system is repeated ` times independently inparallel, then the error is 2�c`, where c > 0 is a constant that depends only on the error ofthe original proof system (assuming this error was less than one) and on the length of theanswers of the provers in the original proof system.As the error in our original two prover proof system was a constant (1 � �=3) that isindependent of n, and the answer length was also a constant (three for the �rst prover, onefor the second prover), it follows from Theorem 4 that the error of our modi�ed two proverproof system is at most 2�c`, for some universal constant c.2.3 The k-prover proof systemWe are now ready to describe our k prover proof system for MAX 3SAT-5 which has thenonstandard feature of two di�erent acceptance predicates. For reasons of e�ciency in theconstruction, we consider a binary code that contains k code words, each of length ` andweight `=2, and Hamming distance at least `=3 between any two code words. For our mainresult we shall choose ` = �(log log n) and k an arbitrarily large constant. In this case,assuming w.l.o.g. that ` is an exact power of 2 and that k < `, the rows of a Hadamardmatrix give a code with the desired properties (in fact, with Hamming distance `=2). Forre�ned results (see Section 6), it is useful to choose k > `, and use some other standardcode instead of the Hadamard code.In our k-prover proof system, the veri�er selects ` clauses uniformly and independentlyat random. Call these clauses C1; : : : ; C`. From each clause, the veri�er selects a singlevariable uniformly and independently at random. These are called the distinguished vari-ables x1; : : : ; x`. (So far, this is identical to the modi�ed two prover proof system.) With10



each prover the veri�er associates a code word. Prover Pi receives Cj for those coordinatesj in its code word that have the bit 1, and xj for those coordinates in its code word thathave the bit 0. Each prover replies with a string of 2` bits. This string is interpreted bythe veri�er as an assignment to all the variables that the prover received (`=2 distinguishedvariables plus three variables in each of the `=2 clauses). For simplicity in describing theacceptance predicate, we assume that for each of the `=2 clauses received by the prover, thecorresponding bits in the prover's answer encode a satisfying assignment for that clause.(This assumption is without loss of generality, as whenever it does not hold, the veri�ermay simply complement the �rst of the three bits that correspond to the variables of theunsatis�ed clause, thereby obtaining a canonical reply that satis�es the clause.) Hence inthis k-prover proof system, the acceptance predicates need not involve clause checks, andwill only involve consistency checks.Observe that the answer of a prover induces an assignment to the distinguished variables.(Namely, if on the respective coordinate the answer gives an assignment to all three variablesin the clause rather than an assignment just to the distinguished variable, remove theassignment for the other two variables. If the same variable appears several times in thesequence of distinguished variables, di�erent occurrences of the same variable may receivedi�erent assignments.) We say that the answers of two provers are consistent if the inducedassignments to the distinguished variables is identical.We can now describe our acceptance predicates:� Weak acceptance predicate: at least one pair of provers is consistent.� Strong acceptance predicate: every pair of provers is consistent.Lemma 5 Consider the k-prover proof system de�ned above and a 3CNF-5 formula �. If� is satis�able, then the provers have a strategy that causes the veri�er to always stronglyaccept. If at most a (1� �)-fraction of the clauses in � are simultaneously satis�able, thenthe veri�er weakly accepts with probability at most k2 � 2�c`, where c > 0 is a constant thatdepends only on �.Proof: If � is satis�able, then the provers can base their answers on a canonical satis-fying assignment (e.g., on the lexicographically �rst such assignment). Then all clauses aresatis�ed and the answers of all provers are mutually consistent.We now consider the case in which only a (1��)-fraction of the clauses of � are satis�able.Assume that the veri�er weakly accepts with probability at least �. Then with respect totwo of the provers, the veri�er accepts with probability at least �=k2. By the property ofthe code, there are at least `=6 coordinates on which one of these provers receives a clause,and the other prover receives a variable in this clause. Fix the question pairs in the other5`=6 coordinates in a way that maximizes the acceptance probability, which by averaging11



remains at least �=k2. Now omit the questions on these 5`=6 coordinates (the provers canreconstruct them anyway). It follows that the two provers have a strategy that succeedswith probability at least �=k2 on `=6 parallel repetitions of the original two prover proofsystem. From Theorem 4, �=k2 < 2�c`. 23 Construction of partition systemsDe�nition 1 A partition system B(m;L; k; d) has the following properties.1. There is a ground set B of m points.2. There is a collection of L distinct partitions p1; : : : ; pL.3. For 1 � i � L, partition pi is a collection of k disjoint subsets of B whose union is B.4. Any cover of the m points by subsets that appear in pairwise di�erent partitions re-quires at least d subsets.Lemma 6 For every c � 0 and m su�ciently large there is a partition system B(m;L; k; d)whose parameters satisfy the following inequalities:1. L ' (logm)c.2. k can be chosen arbitrarily as long as k < lnm3 ln lnm .3. d = (1� f(k))k lnm, where f(k)! 0 as k !1.A partition system with parameters as described above and f(k) = 2=k can be constructedZTIME(mO(logm)).Proof: Consider the following randomized construction for B(m;L; k; d).For each point in the set B, for each partition pi, decide independently at random inwhich subset of the partition to place the point.We show that with high probability d subsets, each belonging to a di�erent partition,cannot cover the set B (for parameters as in the lemma). Consider a particular choice of dsubsets, no two of which belong to the same partition. Then the probability for a point tobe covered by at least one of the d subsets is 1 � (k�1k )d. Using (1� 1=k)k > e�1�1=k (fork � 2), and (1 + 1=k)(1� 2=k) < (1 � 1=k), this probability is at most 1 �m�1+1=k. Asthere are m points, the probability that all m points are covered by the same d subsets is(1�m�1+1=k)m < e�m1=k . There are kd�Ld� < Ld ways of choosing the subsets (the inequalityholds since d >> k). Substituting L ' (logm)c and d < k lnm, the probability that some12



collection of d subsets covers all points is at most (logm)ck lnme�m1=k . For k < lnm3 ln lnm andm su�ciently large, this probability tends to 0, proving that the probabilistic constructionworks.The randomized construction described above requires time polynomial in m, and suc-ceeds with probability at least 1=2. Exhaustively checking that the construction indeedgives a partition system can be done in time roughly �kLd � < mO(logm). The expected num-ber of times the randomized construction needs to be tried until it succeeds is less than 2.2 The randomized construction can be replaced by a deterministic construction using tech-niques developed in [27]. There, partition systems are called anti-universal sets. Theorem 9in [27] says that for any k one can in time linear in m construct a partition system for whichm = ( kk�1)ddO(logd) logL. (Here k is assumed to be an arbitrary constant, and m grows asa function of L and d.) Expressing the ratio d=k as a function of m one gets (1�f(k)) lnm,where f(k)! 0 as k !1, provided that d is su�ciently large as a function of k, and L isbounded by a polynomial in d. This will hold when we use partition systems in Section 4.(The reader may use the following table to translate from our notation to that of [27]: apoint in set B ! a function h in collection H , m! jH j, L! n, k! b, d! k.)4 The reduction to set coverOur reduction extends that of Lund and Yannakakis [26].The veri�er of the k-prover proof system of Section 2.3 uses its randomness, which weassume that is given in form of a random string r, to select ` clauses and a distinguishedvariable in each clause. We call these ` distinguished variables the sequence of distinguishedvariables. The length of the random string is (log 5n=3 + log 3)` = ` log 5n. Let R = (5n)`denote the number of possible random strings for the veri�er. With each random stringr, we associate a distinct partition system Br(m;L; k; d) as in Lemma 6, where L = 2`,m = n�(`), and d = (1� f(k))k lnm. (Altogether there are N =mR points in our set coverproblem.) Each of the L partitions is labeled by an `-bit string p, that corresponds to anassignment to the respective sequence of distinguished variables. Each subset in a partitionis labeled by a unique prover i. We let B(r; j; i) denote the ith subset of partition j inpartition system r. With each question-answer pair (q; a) of prover Pi, where 1 � i � k, weassociate a subset S(q;a;i) as follows. (Remark: the notation S(q;a;i) is somewhat redundant,but is used for clarity. The index i of the prover can be deduced from the syntax of (q; a) byobserving which coordinates have clauses and which have variables.) We use the notation(q; i) 2 r to say that on random string r, prover Pi receives question q. For r such that(q; i) 2 r, consider the induced sequence of distinguished variables, and extract from a ona coordinate by coordinate basis an assignment ar to this sequence of variables. One of the13



partitions of partition system Br(m;L; k; d) has label ar. The subset S(q;a;i) contains thepoints of subset B(r; ar; i), for all r with (q; i) 2 r.Let Q denote the number of possible di�erent questions that a prover may receive.A question to a single prover includes `=2 variables, for which there are n`=2 possibilities(with repetition), and `=2 clauses, for which there are (5n=3)`=2 possibilities. Hence Q =n`=2 � (5n=3)`=2. Observe that this number is the same for all provers.Lemma 7 If � is satis�able, then the above set of N = mR points can be covered by kQsubsets. If only a (1��) fraction of the clauses in � are simultaneously satis�able, the aboveset requires (1� 2f(k))kQ lnm subsets in order to be covered, where f(k)! 0 as k!1.Proof: If � is satis�able, consider a satisfying assignment A for �, and �x for the proversthe strategy of answering each question consistently with this satisfying assignment. Nowconsider the subsets S(q;a;i), for which a is indeed the answer given by prover Pi on questionq under the above strategy. For any r, consider only the subsets S(q1;a1;1), S(q2;a2;2), : : :,S(qk;ak ;k), where for 1 � i � k, (qi; i) 2 r, and ai is the answer given by prover Pi on thisquestion under the strategy described above. Then the partition system Br(m;L; k; d) iscompletely covered by these k sets S(qi;ai;i), since for the partition whose label p agrees withassignment A, the ith such set contains subset B(r; p; i), for every i. A similar argumentapplies for every r. Hence the collection of subsets described above covers all points. Thenumber of subsets used is k times the number of possible questions to a single prover.Interestingly, the kQ subsets used in the cover happen to be disjoint.If only a (1 � �)-fraction of the clauses in � are simultaneously satis�able, then byLemma 5 any strategy of the provers (weakly) succeeds with probability at most k2 � 2�c`.Assume a cover of size (1� �)kQ lnm, where � = 2f(k), and derive a contradiction.Let C be a collection of subsets that covers S, where jCj = (1 � �)kQ lnm. Witheach question q to a prover Pi associate a weight wq;i equal to the number of answers asuch that S(q;a;i) 2 C. Hence Pq;iwq;i = jCj. With each random string r associate a weightwr =P(q;i)2rwq;i. This weight is equal to the number of subsets that participate in coveringthe m points of Br(m;L; k; d). Call r good if wr < (1� �=2)k lnm.Proposition 8 The fraction of good r is at least �=2.Proof: Assume otherwise. Then Pr wr � (1 � �=2)2kR lnm > (1 � �)kR lnm, whereR denotes the number of possible random strings of the veri�er. On the other hand,Xr wr =Xr X(q;i)2rwq;i =Xq;i RQwq;i = RQ jCjwhere the middle equality follows from the fact that there are exactly R=Q random stringsthat cause the veri�er to send out question q. Hence jCj > (1� �)kQ lnm. Contradiction.2 14



Proposition 9 Let C be a collection of subsets that covers S, where jCj = (1� �)kQ lnm.Then for some strategy for the k provers, the veri�er accepts � with probability at least2�=(k lnm)2.Proof: Based on C, we describe a randomized strategy for the k provers. On questionq addressed to prover Pi, prover Pi selects an answer a uniformly at random from the setof answers that satisfy S(q;a;i) 2 C. We show that under this strategy for the provers, theveri�er weakly accepts with probability at least 2�=(k lnm)2, where this probability is takenover the joint distribution of the coin tosses of the provers and of the veri�er. Clearly, by�xing the optimal coin tosses for the provers, one obtains a deterministic strategy for theprovers that satis�es the weak acceptance predicate with a probability that is at least ashigh.Observe that for a �xed r, there is a one to one correspondence between sets B(r; p; i)that participate in the cover of Br(m;L; k; d) and sets S(q;a;i) that belong to C. For thiscorrespondence we need (q; i) 2 r and the projection of a on the sequence of distinguishedvariables to be p.Concentrate now only on good r, and compute a lower bound on the probability thatthe veri�er accepts when he chooses a good r. Observe that by property 4 of partitionsystems, and by the fact that for good r the respective Br(m;L; k; d) is covered by at most(1 � �=2)k lnm subsets, the cover C must have used two subsets from the same partitionp in the cover of Br(m;L; k; d) (by our choice of � = 2f(k)). Denote these two subsets byB(r; p; i) and B(r; p; j), where i 6= j, and their corresponding subsets in C by S(qi;ai;i) andS(qj;aj;j), respectively. Consider what happens when the veri�er chooses random string r.Prover Pi then receives question qi and prover Pj receives question qj . Let Ar;i denote theset of answers satisfying a 2 Ar;i if and only if S(qi;a;i) 2 C. De�ne Ar;j in an analogousmanner. By the strategy described above, prover Pi selects an answer a 2 Ar;i at random(and Pj selects a 2 Ar;j). Observe that for ai and aj above, ai 2 Ar;i and aj 2 Ar;j ,and furthermore, for good r, jAr;ij + jAr;j j < k lnm. Hence the joint probability that theprovers choose to answer with ai and aj is at least 4=(k lnm)2. Since both these answersare consistent with the label p of the same partition, the veri�er weakly accepts.To complete the proof, use Proposition 8, which shows that the probability that a veri�erchooses a good r is at least �=2. 2To complete the proof of Lemma 7, observe that 2�=(k lnm)2 > k2 � 2�c`, for su�cientlylarge ` (made possible by ` = �(log logn) and m = n�(`)). 2We now prove our main theorem.Theorem 10 If there is some � > 0 such that a polynomial time algorithm can approximateset cover within (1� �) lnn, then NP � TIME(nO(log logn)).15



Proof: Assume that there is a polynomial time algorithm A that approximates set coverwithin (1� �) lnn. Consider now an arbitrary NP-problem. Reduce it to the NP-completeproblem of approximating an instance of max 3SAT-5. Now follow the reduction to setcover described above, with k su�ciently large so that f(k) in Lemma 7 is smaller than �=4,and with m = (5n)2`=�. Using the deterministic construction of partition systems describedin [27], and observing that m, R and Q are bounded by nO(log logn), the time to performthis reduction is nO(log logn). Recall that the number of points in the set cover problemis N = mR where R = (5n)`, and observe that for m as above, lnm > (1 � �=2) lnN .By Lemma 7, if the original NP instance was satis�able, all points can be covered by kQsubsets, and if the original NP instance was not satis�able, all points cannot be coveredby (1 � 2f(k))kQ lnm. For our choice of k and m, the ratio between the two cases is(1� 2f(k)) lnm > (1 � �) lnN . Hence by applying algorithm A to the set cover problem,one can tell whether the original NP instance was satis�able or not. 25 Max k-coverWe say that a polynomial time algorithm constructively approximates max k-cover withina ratio of � < 1 if on any input, the number of points covered by the k sets selected by thealgorithm is at least a �-fraction of the number of points covered by the optimal solution.The following proposition is well known and is presented for completeness.Proposition 11 The greedy algorithm (iteratively selecting the sets that cover the largestnumber of yet uncovered points) constructively approximates max k-cover within a ratio ofat least 1� 1=e ' 0:632.Proof: Let S 0 � S be the set of points covered by the optimal solution, and let n0 = jS 0j.Let ni be the number of new points covered by the ith set selected by the greedy algorithm.Then since S 0 can be covered by k sets, it follows thatni � n0 �Pi�1j=1 njkHence Pij=1 nj � n0 � n0(1� 1k )i andkXi=1 ni � n0 � n0(1� 1k )k � n0(1� 1=e)2Using a Turing reduction, Theorem 10 can be used to show that the performance guar-antee of the greedy algorithm is optimal up to low order terms. This has also been observedby others (see [15], for example). 16



Proposition 12 If max k-cover can be constructively approximated in polynomial timewithin a ratio of (1� 1=e+ �) for some � > 0, then NP � TIME(nO(loglogn)).Proof: Assume that a polynomial time algorithm A approximates max k-cover withina ratio of 1� 1=e+ � for some � > 0. We use algorithm A as a subroutine in a polynomialtime algorithm B that approximates set cover within (1 � �) lnn. By Theorem 10, thisimplies that NP � TIME(nO(log logn)).Given an instance of set cover, try out all possible values of 1 � k � n as the number ofsets that su�ce to cover all points. One of those choices of k is the true optimal k, and weconcentrate on the one case in which this k is tried out. Algorithm B repeatedly appliesalgorithm A on max k-cover problems, where after each application the points alreadycovered by previous applications are removed (but k remains unchanged).Since all of S can be covered by k of the sets, then each time algorithm A is applied afraction of at least (1� 1=e+ �) of the remaining points are covered. Hence the number oftimes that A is applied is at most ` where ` satis�es (1=e � �)` = 1=n, and the number ofsets used in the cover is at most `k (recall that k is the number of sets used by the optimumcover). Simple manipulations show that ` = ln n=(1 � ln(1 � e�)) < (1 � �) lnn for some� > 0 that depends only on �. 2We say that a polynomial time algorithm approximates max k-cover within a ratio of0 < � < 1 if on any input, the algorithm outputs a number that is between opt and � � opt,where opt denotes number of points covered by the optimal solution. The following theoremimproves on Proposition 12 in two respects: approximation need not be constructive, andthe assumption NP 6� TIME(nO(log logn)) is weakened to P 6= NP .Theorem 13 For any � > 0, max k-cover cannot be approximated in polynomial timewithin a ratio of (1� 1=e+ �), unless P = NP .Proof: We show a reduction from approximating max 3SAT-5 to approximating maxk-cover. The value of k for the k-cover problem will be denoted by k0, so as to distinguish itfrom the number of provers in the underlying k-prover proof system, and from the parameterk that this number induces for partition systems.The proof closely mimics that for set cover, and the reader is assumed to be familiar withthe reduction of Section 4 and the proof of Lemma 7. Unlike the case for set cover, we set theparameter ` (number of repetitions) to be some large constant (rather than �(log log n)).For this reason we shall get NP-hardness results rather than results under the assumptionthat NP 6� TIME(nO(log logn)). The explicit construction of partition systems becomessimpler. Recall that L = 2` and let m = kL (the number of points in the partition systemis now a constant that depends on the number of provers and the number of repetitions).Treat the points in a partition system as vectors in f0; : : : ; k�1gL, and let the ith partition17



partition the points into k disjoint subsets according to their value on the ith coordinate.Clearly, any collection of j subsets that appear in pairwise disjoint partitions covers exactly(1� (1� 1=k)j)m points.By performing the reduction of Section 4, we create an instance of max k0-cover withk0 = kQ. If the original 3CNF-5 formula is satis�able, then all N points can be covered bykQ sets. We sketch the proof that if only a (1 � �0)-fraction of the clauses of the originalformula are simultaneously satis�able, then kQ sets can cover at most (1 � 1=e + g(k))Npoints, where g(k)! 0 as k !1.Assume that a (1�1=e+�)-fraction of the points are covered, and derive a contradiction.In analogy to the proof of Lemma 7, call r good if two conditions hold: wr � 3k=�, and thewr sets that participate in covering points in the partition system r contain at least twosets from the same partition.Proposition 14 The fraction of good r is at least �=3.Proof: The average value (over the choice of r) of wr is exactly k (similar to the proofof Proposition 8). Hence the fraction of r with wr > 3k=� is at most �=3. Even if all pointsof the respective partition systems of these r are covered, the average number of points thatneed to be covered from each other partition system is at least (1 � 1=e + 2�=3)m. Theaverage value of wr for these other r is not larger than k.Now assume that the fraction of good r is less than �=3 and derive a contradiction.Even if all points of the good partition systems are covered, the average number of pointsthat need to be covered from each remaining partition system is at least (1� 1=e+ �=3)m.The average value of wr for the remaining partition systems is at most (1 + �=3)k. For thefunction h(j) = (1�(1�1=k)j)m which describes how many points are covered by j subsets,the second derivative is never positive. Hence the average number of points that are coveredper partition is maximized when all wr are equal, and then it is (1 � (1 � 1=k)(1+�=3)k)m,which is smaller than (1� 1=e+ �=3)m (for large enough k). 2Now proceed as in Proposition 9, using the fact that wr � 3k=� for good r. This willgive a strategy for the provers that causes the veri�er to weakly accept with probability�3( �3k)2. This is larger than k22�c`, for large enough `. Contradiction. 26 Re�nementsIn our hardness of approximation result for set cover, � need not be constant. It maybe a decreasing function of n. To make � as small as possible, we strengthen the NP 62TIME(nlog logn) assumption. Observe that the low order terms in Proposition 15 are not farfrom optimal, as the greedy algorithm approximates set cover within lnn�ln ln n+O(1) [33].18



Proposition 15 If for some � > 0, NP 6� ZTIME(2n�), then for some constant c0 > 0,there is no polynomial time algorithm that approximates set cover within ln n� c0(ln lnn)2.Proof: By the NP-completeness of approximating MAX 3SAT-5, if there is a problemin NP that does not have ZTIME(2n�) algorithms for some � > 0, then max 3SAT-5 is notapproximable in ZTIME(2O(n2�)), for some (other) 0 < � < 1. Performing the reduction ofSection 4 under this stronger assumption, we can choose parameters of the reduction (suchas k andm) to be larger, obtaining smaller low order terms in the hardness of approximationresult for set cover. Speci�cally, we choose:Number of points in a partition system: m = en� .Number of provers: k = lnm3 ln lnm ' n�.Number of random bits of veri�er: ` = c00 log n, for some su�ciently large constantc00 > 0.We �rst verify that the above combination of parameters is possible. Recall from Sec-tion 2 that we need k codewords of length ` such that the Hamming distance between anytwo codewords is 
(`). This is possible whenever k is at most mildly exponential in ` (e.g.,by taking a random code), which holds for the choice of ` = c00 logn. Another thing thatneeds to be checked is that the proof of Lemma 7 still goes through, and we shall verify thisshortly.We analyze the hardness of approximation ratio that these parameters give. Observethat for ` as above, the number of random strings available to the veri�er is R = (5n)` =(5n)c logn. The total number of points in the set cover problem is N = mR. Recall thatif the original 3CNF-5 formula is satis�able then kQ sets may be used to cover all points,where k is the number of provers, and Q is the number of di�erent questions that a singleprover can receive. If only a (1� �0)-fraction of the clauses of the original 3CNF-5 formulaare simultaneously satis�able then (1� 2f(k))kQ lnm sets are required in order to cover allpoints. The ratio between these two cases is (1� 2f(k)) lnm, which we need to express asa function of N , the total number of points in the instance of set cover.From Lemma 6 it follows that in ZTIME(mO(logm)) = ZTIME(2O(n2�)) we can con-struct partition systems with f(k) = 2=k = 6 ln lnm= lnm. From our choice of parameters,lnm = n� and lnN = lnmR = n�+O((logn)2), implying that lnm � lnN �O((ln lnN)2).Altogether we have that (1� 2f(k)) lnm � lnN �O((ln lnN)2), as needed.Finally, recall that for the proof of Lemma 7 we required that 4f(k)=(k lnm)2 > k2 �2�c`,which indeed holds when ` is a su�ciently large multiple of logn. 2An open question that is \traditionally" (ever since [26]) associated with the hardness ofapproximating set cover is that of constructing two prover one round proof systems for NP,in which the amount of randomness used by the veri�er is logarithmic, the answer lengthof the provers is logarithmic, and the error is polynomially small. Recall that our new19



k-prover proof system is a variation on the low error two prover proof system of Section 2.2.Conceivably, if we had as a starting point a low error two prover proof system in whichthe veri�er uses O(logn) random bits, our techniques would lead to a proof of hardnessof approximating set cover within (1� �) ln n under the assumption that P 6= NP , ratherthan NP 6� TIME(nO(log logn)). The number of random bits used by the veri�er is relevanthere because we construct instances of set cover with N = mR points. For the reduction tobe polynomial, R must be polynomial in n, implying that the number of random bits usedby the veri�er must be logarithmic in n. The error in the proof system has to be at mostO(1=(logn)2) for the proof of Lemma 7 (or a similar lemma) to go through. The answerlength must remain logarithmic so that the number of subsets and the number of partitionsin a partition system will remain polynomial.The open question of trying to decrease R is also related to the analysis of the loworder terms as in Proposition 15. For m = 2n� , if R is decreased to O(nc), then lnm =lnN � O(ln lnN). This may allow to reduce the low order term to �(log logn) (under thecomplexity assumption of Proposition 15). We remark that for this choice of parameterswe need the error in the k-prover proof system to be polynomially small in order for theproof of Lemma 7 to go through.We do not know that reducing the number of random bits used by the veri�er in twoprover proof systems is a necessary requirement for obtaining tight (up to low order terms)NP-hardness results for set cover. Moreover, it may not even be a su�cient requirement,since current techniques require that the proof systems have very regular structure.Some of the di�culties involved in reducing the number of random bits in two proverproof systems are discussed in [10].AcknowledgementsI thank Moni Naor, Leonard Shulman, and Aravind Srinivasan for a preview of [27], andMihir Bellare for his comments on an earlier version of this manuscript.References[1] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy. \Proof veri�cation and hardnessof approximation problems". In Proc. of 33rd Annual Symposium on Foundations ofComputer Science, 14{23, 1992.[2] S. Arora, S. Safra. \Probabilistic checking of proofs: a new characterization of NP". InProc. of 33rd Annual Symposium on Foundations of Computer Science, 2{13, 1992.[3] L. Babai, L. Fortnow, C. Lund, \Non-deterministic exponential time has two-proverinteractive protocols", Computational Complexity, 1:3{40, 1991.20
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