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Abstract

The budgeted maximum coverage problem is: given a collection § of sets with associated
costs defined over a domain of weighted elements, and a budget L, find a subset of &’ C & such
that the total cost of sets in &’ does not exceed L, and the total weight of elements covered by
&S’ is maximized. This problem is NP-hard. For the special case of this problem, where each set
has unit cost, a (1 — %)—approximation is known. Yet, no approximation results are known for
the general cost version. The contribution of this paper is a (1 — %)—approximation algorithm
for the budgeted maximum coverage problem. We also argue that this approximation factor is
the best possible, unless NP C DT IM E(n'°8lo8n).

1 Introduction

The budgeted mazimum coverage problem is defined as follows. A collection of sets § =
{51, 52,..., 5} with associated costs {c¢;}/~; is defined over a domain of elements X =
{1,22,...,2,} with associated weights {w;}" ;. The goal is to find a collection of sets &’ C S,
such that the total cost of elements in &’ does not exceed a given budget L, and the total weight
of elements covered by &’ is maximized.

The wunit cost version of the problem, where each set has unit cost, and the goal is to find
k sets from & such that the total weight of covered elements is maximized, has been considered
previously. Many applications arising in circuit layout, job scheduling, facility location, and other
areas, may be modeled using the maximum coverage problem (see [H97] and the references therein
for examples of applications).

The budgeted maximum coverage problem introduces a more flexible model for the applications
mentioned above. Consider, for example, the problem of locating k identical facilities so that the
market share is maximized, introduced in [MZHS83]. Namely, there exist clients with associated
profits, situated in known locations. A client will use a facility if the facility is within the specified
distance from the client. The goal is to locate k facilities so that the total profit of the clients served
by the facilities, is maximized. In another version of this problem, considered in [BLF92, BBL95],
and known as optimal location of discretionary service facilities, facilities gain profits associated
with travel paths of customers; a facility covers a path if it is located in one of the nodes on the path,
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or at some vertex “close” to the path. Clearly, the problems described above can be modeled by the
unit cost maximum coverage problem. However, in practice, the cost of constructing a facility may
depend on certain factors associated with the location of the facility. For example, each candidate
site for constructing a facility is associated with some cost, and one is assigned a limited budget
for constructing the facilities. This generalization of the problem of locating facilities to maximize
market share is also discussed in [MZH83]. The budgeted maximum coverage problem is a model
that allows us to handle this type of applications.

Unfortunately, even the unit cost version of the maximum coverage problem is NP-hard, by
a straightforward reduction from the set cover problem. Therefore, we look for an approximate
solution which is near-optimal and computable in polynomial time. An approximation algorithm
for a maximization problem is said to achieve approximation ratio 8, if the solution delivered by
the algorithm for any instance of the problem is always at least the multiplicative factor of ¢ from
the optimum for this instance.

Several results related to the unit cost maximum coverage problem were presented in the lit-
erature. Nemhauser and Wolsey [NW81] and Conforti and Cornuejols [CC84] considered the gen-
eral problem of maximizing submodular functions (a function f is called submodular if f(A) +
f(B) > f(AUB)+ f(AN B), for any sets A, B in the domain of f). They have shown, in par-
ticular, that the greedy heuristic achieves an approximation factor of 1 — (1 — %)k > (11— %) for
maximizing nondecreasing submodular functions satisfying f(0) = 0, where k is the maximum
cardinality of sets in the optimization domain. Vohra and Hall [VH93] noted that the unit cost
maximum coverage problem belongs to this class of problems. The greedy heuristic for the special
case of the maximum coverage problem picks at each step a set maximizing the weight of the un-
covered elements. Hochbaum and Pathria [HP94] (see also Hochbaum [H97]) presented an elegant
analysis of the greedy heuristic. As we show in the sequel, the greedy heuristic cannot be trivially
generalized to achieve a good approximation for the budgeted version of the problem.

In this paper we present a (1— %)-approximation algorithm for the budgeted maximum coverage
problem. This is the first approximation algorithm presented for the budgeted version of the
problem. We show that a small modification to the greedy heuristic yields a constant approximation
factor for this problem. We then show how to further improve the approximation factor to (1 — %)
using the enumeration technique. We argue that the latter approximation ratio is the best possible
for the maximum coverage problem, in the sense that no approximation algorithm with performance
guarantee (1 — L + ¢) exists for any € > 0, unless NP C DTIM E(nlo¢los™),

The rest of the paper is organized as follows. In Section 2 we show that the greedy heuristic
cannot achieve a good performance guarantee for the budgeted maximum coverage problem; we
present an algorithm that achieves a constant factor approximation for this problem and analyze
its performance guarantee. Section 3 presents an improved algorithm and the analysis of its per-
formance guarantee. In Section 4 we present a bound on the hardness of approximation for the
budgeted maximum coverage problem.



2 The Modified Greedy Algorithm

Throughout the rest of this paper we use the following notation. Let {c¢;}, denote the costs of
the sets in S, let {w;}"_; denote the weights of the elements in X, and let W; be the total weight
of the elements covered by set S;, i =1,...,m. Let G C § be a collection of sets. Let w(G) denote
the total weight of the elements covered by G. Let W/, i = 1,...,m, denote the total weight of the
elements covered by set 5;, but not covered by any set in G. Without loss of generality we may
assume that the cost of each set does not exceed L, since sets of cost greater than L do not belong
to any feasible solution.

We first observe that the greedy heuristic that picks at each step a set maximizing the ratio
%ﬁ has an unbounded approximation factor. Consider, for example, two elements, 21 of weight
1 and x; of weight p. Let S; = {a;}, i = 1,2,let ¢; = 1, c2 = p+ 1, and let L = p+ 1. The
optimal solution contains the set 59 and has weight p, while the solution picked by the greedy
heuristic contains the set 5 and has weight 1. The approximation factor for this instance is p, and
is therefore unbounded.

Next, we show that a small modification to the greedy heuristic achieves a constant approxi-
mation factor for the budgeted maximum coverage problem. The algorithm is as follows.

Algorithm 1:
G—0;C—0;U < S;
Repeat

!

select 5; € U that maximizes =
if C' 4+ ¢; < L then
G— GUS;
C—CHeg
U—U\S;
Until U =0
Select a set 5; that maximizes W; over S.

If W(G) > Wy, output G, otherwise, output {5}

Algorithm 1 finds a collection of sets according to the greedy heuristic. This collection is the first
candidate for the final output. The second candidate is a single set 5; for which W; is maximized.
The algorithm outputs the candidate solution having the maximum weight.

Next, we analyze the performance guarantee of Algorithm 1. Let OPT denote the collection
of sets in an optimal solution. Let r be the number of iterations executed by the greedy heuristic
(the “repeat loop”) until the first set from OPT is considered, but not added to G, because its
addition would violate the budget L. Let [ be the number of sets added to G in the first r
iterations. Without loss of generality, we may renumber the sets so that §; is the i-th set added to
G,i=1,...,1, and 541 is the first set from O PT selected by the algorithm but not added to G.
Let G;,i=1,...,1+ 1 denote Ué‘:1 S;. Finally, let j; be the index of the iteration in which set 5;
was considered, 1 = 1,...,1 + 1.

The following two lemmas generalize the lemmas for the unit cost version of the problem,

presented in [HP94] (see also [H97]).



Lemma 1: After each iteration j;, : = 1,...,[ 4 1, the following holds:

(&)
w(Gz) — w(Gi_l) > f( (OPT) — w(Gz’—l))-
Proof: Clearly, w(OPT) w(G4-1) is no more than the Welght of the elements covered by OPT
but not covered by G;_;. For each set in OPT \ G;_1,
since 5; maximizes this ratlo over all sets that had not been selected before iteration j;. Since the
total cost of the sets in OPT \ G;_ is bounded by the budget L, the total weight of the elements

!
covered by the sets in O PT \ G;_y and not covered by G;_1, is at most L - gL Hence, we get

W(OPT) - w(Giy) < 1L, (1)

¢

But, from the definition of W/, it follows that W/ = w(G;)—w(G;—1). Substituting w(G;)—w(Gi-1)
for W/ in (1), and multiplying both sides by %, we get the required inequality. a

Lemma 2: After each iteration j;, ¢ = 1,...,l+ 1, the following holds:

1- H (1 - %’“)] - w(OPT).

k=1

Proof: We prove the lemma by induction on the number of iterations in which the sets 5,
i = 1,...,0 4+ 1, are considered. For ¢: = 1, w(G1) = Wy = W/, and we need to prove that
W{ > S -w(OPT). This follows since the ratio VCV—lll is maximum over all sets, and since the cost of
the optimum is bounded by L. Suppose the statement of the lemma holds for iterations j, ..., ji—1.
We show that it also holds for iteration j,.

w(G) = w(Giz1) + [Cw(Gi) — w(Gi-1)]
> w(Gio) + 5 (OPT) — w(Giy)
- (1 - %) w(Gi) + 5 w(OPT)
> (1 - %) : (1 - kljl (1 - %’“)) - w(OPT) + = - w(OPT)

1- (1 - C—’“) - w(OPT).
L
In the above proof, the first inequality follows by Lemma 1, and the second inequality follows from

the induction hypothesis. O a

Theorem 3: Algorithm 1 achieves an approximation factor of 3 - (1 — 1) for the budgeted maximum
coverage problem.

Proof: First, we observe that for ay,...,a, € R such that Yo ia; = A, the function (1 —
[Ti=i(1 — %)) achieves its minimum When ag=ay=...=a, =

:|:>



Let ¢(P) denote the total cost of a collection of sets P C §. Applying Lemma 2 to iteration
jie1, we get:

V

w(Gry1) > :1 - lﬁ (1 - %)] -w(OPT)

k=1

> [1-m (1- )| worr)
. (1 _ l%)m] - w(OPT)
> (1 _ %) . w(OPT)

Note that the second inequality follows from the fact that adding S;+1 to G; violates the budget
L, and therefore ¢(Giy1) = ¢(Gp) + ¢141 > L. Therefore, we get:

1
w(Giyr) = w(G) + Wi 2 (1- 1) -w(OPT), (2)

Next we observe that W/, is at most the maximum weight of the elements covered by a single
set, i.e., the weight W} of the second candidate solution found by the algorithm. Therefore,

1
w(G) + Wy > w(Gh) + Wiy > (1 - E) . w(OPT).

From the inequality above we have that at least one of the values w(G), Wy is greater than or
equal to 2 - (1 — )w(OPT), and the theorem follows. | ]

3 Improving the Performance Guarantee

In this section we show how to generalize Algorithm 1 using the enumeration technique, so as to
obtain better approximation factors. Let k£ be some fixed integer. We consider all subsets of & of
cardinality & which have cost at most I, and we complete each subset to a candidate solution using
the greedy heuristic. Another set of candidate solutions consists of all subsets of § of cardinality
less than k& which have cost at most L. The algorithm outputs the candidate solution having the
greatest weight. Below follows the formal description of the algorithm.

Algorithm 2:
H,; — argmax{w(G), such that G C S,
Hy — 0
For all G C S, such that |G| =k and ¢(G) < L do
U—S8\G
Repeat

G| <k, and ¢(G) < L}

!

select S; € U that maximizes VZ—:
if ¢(G)+ ¢; < L then



G —GUS;
U—U\S;
Until U =0
if w(G) > w(Hs) then Hy — G
If w(Hy) > w(Hsy), output Hy, otherwise, output [,

Next, we prove the following theorem about the performance guarantee of Algorithm 2.

Theorem 4: For k > 3, Algorithm 2 achieves an approximation factor of (1 — 1) for the budgeted

maximum coverage problem.

Proof: We may assume without loss of generality that |O PT| > k, since otherwise Algorithm 2
finds an optimal solution.

Let us order the sets in O PT by selecting at each step the set in O PT that covers uncovered
elements of maximum total weight. Let Y be the first k£ sets in this order. Consider the iteration of
Algorithm 2 in which subset Y is considered. Let Y’ denote the collection of sets that is added to
Y by the algorithm, and let G =Y UY’. Clearly, w(G) = w(Y) 4+ w(Y'). Here, and in the sequel
of this section, we slightly abuse notation and let w(P) denote the total weight of the elements
covered by P but not covered by Y, for any collection of sets P C S\ Y.

The completion of Y to GG can be viewed as an application of the greedy heuristic from Algorithm
1. Therefore, the results from the previous subsection can be used in this case. Let r be the number
of iterations executed by the greedy heuristic during the completion of subset Y to G, until the
first set from OPT \ 'Y is considered, but not added to Y’ because its addition would violate the
budget L. Let [ be the number of sets added to Y in the first r iterations. Let S; be the i-th set
added to Y', i = 1,...,1, and let S;41 be the first set from OPT \ Y that is considered but not
added to Y'. Applying Inequality (2), we get:

€

1
w(Y')+ Wy > (1 - —) -w(OPT\Y).
Next, we observe that when the sets of O PT are ordered, the weight of the uncovered elements

covered by each set in Y is at least Wl/+17 otherwise set 541 would have belonged to Y. Therefore,

Wiy < zu(Y) (3)

We now get,
w(G@) = w(Y)+w(Y’)

> w4 (1-7) - w(OPT\Y) - W,
_w(Y)

v

waq+<1—é)quPT\Y)

(1—%)-waj+<1—%)4mopT\Y)

v



But, w(Y) 4+ w(OPT \'Y) = w(OPT), and hence we get:

w(G) > (1 — l) -w(OPT) for k > 3,

€

proving the theorem. a i

4 A Lower Bound

We now show that even the unit cost version of the maximum coverage problem cannot be approx-
imated within a factor better than (1 — 1), unless NP C DTIM E(n'°8!°¢™). We note that this
was also independently observed by Feige [F97]. We use an argument similar to that in [GK98] for
proving a hardness result for a facility location problem.

Suppose that there exists an approximation algorithm, denoted by A, guaranteeing approxima-
tion within a factor a > (1 — 1) for the unit cost maximum coverage problem. We show that in
this case, the set cover problem could be approximated within an approximation factor better than
Inn, where n is the number of elements. By the following result of Feige [F96] this implies that
NP C DTIM E(nl°slosn),

Theorem 5: If the set cover problem is approximable within a factor of (1 — €)Inn for any € > 0

then NP C DTIM E(n'°8'o8),

Consider a set cover instance where each set has unit cost. Assign unit weight to each element.
Let n be the number of elements in the instance. Now, apply algorithm A to the resulting maximum
coverage instance, where the number of allowed sets is fixed to k, the cardinality of an optimal set
cover (we may assume that the number of sets in the optimal set cover is known; otherwise we
may try each k € {1,...,n}). Recall that in every feasible solution for the set cover instance, each
element is covered by some set. Hence, the number of elements covered by an optimal solution for
the maximum coverage instance is n, the total number of elements. Therefore, we are guaranteed
to cover an « fraction of all the elements, where a > (1 — 1). Now we discard the sets that have
been selected and the elements they cover, and apply again Algorithm A with the same bound on
the number of sets. We repeat this procedure until all elements are covered.

Suppose in iteration ¢, the number of uncovered elements at the start of the iteration is n;. The

algorithm picks k sets and covers an; elements, where a > (1 — 1). Clearly, 7,41 = n;(1 — @) and

€
ny = n. Suppose after { iterations ngyq1 = 1. The total number of sets that are picked is £k, with

an approximation factor of £.
— 1 — J4
nep1 = 1 =n(l —a).

Hence |
0 nn

(L)

11—«



Using the fact that a > (1 — 1), we obtain

1( L >>1
Ill_a .

This implies that we have an approximation factor of clnn for some ¢ < 1. On the other hand, it

was shown by Feige [F96] that the set cover problem is not approximable within a factor (1—¢)Ilnn
for any € > 0 unless NP C DTIM E(n'°81°6™). We conclude that no approximation algorithm with
ratio better than (1—1) exists for the maximum coverage problem unless NP C DTTM E(n'°slo¢™).
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