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ABSTRACT

In the Submodular Welfare Problem, m items are to be dis-
tributed among n players with utility functions wi : 2[m] →
R+. The utility functions are assumed to be monotone and
submodular. Assuming that player i receives a set of items
Si, we wish to maximize the total utility

Pn
i=1 wi(Si). In

this paper, we work in the value oracle model where the
only access to the utility functions is through a black box
returning wi(S) for a given set S. Submodular Welfare
is in fact a special case of the more general problem of
submodular maximization subject to a matroid constraint:
max{f(S) : S ∈ I}, where f is monotone submodular and
I is the collection of independent sets in some matroid.

For both problems, a greedy algorithm is known to yield
a 1/2-approximation [21, 16]. In special cases where the
matroid is uniform (I = {S : |S| ≤ k}) [20] or the sub-
modular function is of a special type [4, 2], a (1 − 1/e)-
approximation has been achieved and this is optimal for
these problems in the value oracle model [22, 6, 15]. A
(1 − 1/e)-approximation for the general Submodular Wel-
fare Problem has been known only in a stronger demand
oracle model [4], where in fact 1 − 1/e can be improved [9].

In this paper, we develop a randomized continuous greedy
algorithm which achieves a (1 − 1/e)-approximation for the
Submodular Welfare Problem in the value oracle model. We
also show that the special case of n equal players is approx-
imation resistant, in the sense that the optimal (1 − 1/e)-
approximation is achieved by a uniformly random solution.
Using the pipage rounding technique [1, 2], we obtain a
(1− 1/e)-approximation for submodular maximization sub-
ject to any matroid constraint. The continuous greedy algo-
rithm has a potential of wider applicability, which we demon-
strate on the examples of the Generalized Assignment Prob-
lem and the AdWords Assignment Problem.
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F.2 [Theory of computing]: Analysis of algorithms and
problem complexity
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1. INTRODUCTION
A function f : 2X → R is monotone if f(S) ≤ f(T ) when-

ever S ⊆ T . We say that f is submodular, if

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T )

for any S, T . Usually we also assume that f(∅) = 0. Sub-
modular functions arise naturally in combinatorial optimiza-
tion, e.g. as rank functions of matroids, in covering prob-
lems, graph cut problems and facility location problems [5,
18, 24]. Unlike minimization of submodular functions which
can be done in polynomial time [10, 23], problems involving
submodular maximization are typically NP-hard. Research
on problems involving maximization of monotone submodu-
lar functions dates back to the work of Nemhauser, Wolsey
and Fisher in the 1970’s [20, 21, 22].

1.1 Combinatorial auctions
Recently, there has been renewed interest in submodular

maximization due to applications in the area of combinato-
rial auctions. In a combinatorial auction, n players compete
for m items which might have different value for different
players, and also depending on the particular combination
of items allocated to a given player. In full generality, this
is expressed by the notion of utility function wi : 2[m] → R+

which assigns a value to each set of items potentially allo-
cated to player i. Since this is an amount of information
exponential in m, we have to clarify how the utility func-
tions are accessible to an algorithm. Unless we consider a
special class of utility functions with a polynomial-size repre-
sentation, we typically resort to an oracle model. An oracle
answers a certain type of queries about a utility function.
Two types of oracles have been commonly considered:

• Value oracle. The most basic query is: What is the
value of wi(S)? An oracle answering such queries is
called a value oracle.

• Demand oracle. Sometimes, a more powerful oracle
is considered, which can answer queries of the following
type: Given an assignment of prices to items p : [m] →
R, which set S maximizes wi(S) −

P

j∈S pj? Such an
oracle is called a demand oracle.



Our goal is to find disjoint sets S1, . . . , Sn maximizing the
total welfare

Pn
i=1 wi(Si). Regardless of what type of oracle

we consider, there are computational issues that make the
problem very hard in general. In particular, consider players
who are single-minded in the sense that each desires one
particular set Ti, wi(S) = 1 if Ti ⊆ S and 0 otherwise.
Then both value and demand queries are easy to answer;
however, the problem is equivalent to set packing which is
known to have no m−1/2+ǫ-approximation unless P = NP
[13, 27]. Thus, restricted classes of utility functions need to
be considered if one intends to obtain non-trivial positive
results.

A class of particular interest is the class of monotone sub-
modular functions. An equivalent definition of this class is
as follows: Let fS(j) = f(S + j)− f(S) denote the marginal
value of item j with respect to S. (We write S + j instead
of S ∪ {j} to simplify notation.) Then f is monotone if
fS(j) ≥ 0 and f is submodular if fS(j) ≥ fT (j) whenever
S ⊂ T . This can be interpreted as the property of dimin-
ishing returns known in economics and arising naturally in
certain settings. This leads to what we call the Submodular
Welfare Problem.

The Submodular Welfare Problem.
Given m items and n players with monotone submodular

utility functions wi : 2[m] → R+, we seek a partition of the
items into disjoint sets S1, S2, . . . , Sn in order to maximize
Pn

i=1 wi(Si).

This problem was first studied by Lehmann, Lehmann and
Nisan [16]. They showed that a simple on-line greedy algo-
rithm gives a 1/2-approximation for this problem. There has
been no further progress over 1/2 in the value oracle model,
except for lower order terms and special cases. On the nega-
tive side, it was proved that the Submodular Welfare Prob-
lem cannot be approximated to a factor better than 1−1/e,
unless P = NP [15]; recently, Mirrokni, Schapira and the
author showed that a better than (1 − 1/e)-approximation
would require exponentially many value queries, regardless
of P = NP [19]. A (1 − 1/e)-approximation was devel-
oped by Dobzinski and Schapira [4]; however, their algo-
rithm works in the demand oracle model. In fact, it turns
out that a factor strictly better than 1−1/e can be achieved
in the demand oracle model [9]. (The hardness result of [15]
is circumvented by the demand oracle model, since demand
queries on the hard instances are in fact NP-hard to an-
swer.) In the value oracle model, Dobzinski and Schapira [4]
gave an (on-line) n

2n−1
-approximation, and also a (1− 1/e)-

approximation in the special case where utilities can be writ-
ten explicitly as coverage functions for some set system.

The welfare maximization problem has been also con-
sidered under assumptions on utility functions somewhat
weaker than submodularity, namely subadditivity1 and frac-
tional subadditivity2. In the value oracle model, m−1/2+ǫ-
approximation for these classes of utility functions is impos-
sible with a polynomial number value queries [19]. In con-
trast, the demand oracle model allows 1/2-approximation for
subadditive utility functions and (1−1/e)-approximation for
fractionally subadditive functions [7].

1f is subadditive if f(S ∪ T ) ≤ f(S) + f(T ) for any S, T .
2f is fractionally subadditive if f(S) ≤

P

T αT f(T ) for any
αT ≥ 0 such that ∀j ∈ S;

P

T :j∈T αT ≥ 1.

1.2 Submodular maximization subject to ama-
troid constraint

The Submodular Welfare Problem is in fact a special case
of the following problem, considered by Fisher, Nemhauser
and Wolsey in 1978 [21]. The reduction appears in [17]; we
review it briefly in Section 2.

Submodular maximization subject to a matroid con-
straint.

Given a monotone submodular function f : 2X → R+ (by
a value oracle) and a matroid 3 M = (X, I) (by a member-
ship oracle), find maxS∈I f(S).

In [20], Nemhauser, Wolsey and Fisher studied the special
case of a uniform matroid, I = {S ⊂ X : |S| ≤ k}. In this
case, they showed that a greedy algorithm yields a (1−1/e)-
approximation. Nemhauser and Wolsey also proved that a
better approximation is impossible with a polynomial num-
ber of value queries [22]. Note that the Max k-cover prob-
lem, to find k sets maximizing |

S

j∈K Aj |, is a special case
of submodular maximization subject to a uniform matroid
constraint. Feige proved that 1−1/e is optimal even for this
explicitly posed problem, unless P = NP [6].

For general matroids, the greedy algorithm delivers a fac-
tor of 1/2 [21]. Several subsequent results indicated that it
might be possible to improve the factor to 1−1/e: apart from
the case of uniform matroids, (1 − 1/e)-approximation was
also obtained for a “maximum coverage problem with group
budget constraints” [3, 1], for a related problem of submodu-
lar maximization subject to a knapsack constraint [25], and
most recently for any matroid constraint and a special class
of submodular functions, sums of weighted rank functions
[2]. A key ingredient in the last result is the technique of pi-
page rounding, introduced by Ageev and Sviridenko [1] and
adapted to matroid optimization problems by Calinescu et
al. [2]. In [2], this technique converts a fractional LP solu-
tion into a feasible integral solution. Nonetheless, since it is
unclear how to write a suitable LP for a general submodu-
lar function given by a value oracle, this approach seems to
apply only to a restricted class of functions.

1.3 Our results
In this paper, we design a randomized algorithm which

provides a (1−1/e)-approximation for the Submodular Wel-
fare Problem, using only value queries. The algorithm can
be viewed as a continuous greedy process which delivers an
approximate solution to a non-linear continuous optimiza-
tion problem. Employing the technique of pipage rounding
[1, 2], we also obtain a (1−1/e)-approximation for submodu-
lar maximization subject to an arbitrary matroid constraint.
This settles the approximation status of these problems in
the value oracle model. Interestingly, in the special case
of Submodular Welfare with n equal players, the optimal
(1 − 1/e)-approximation is in fact obtained by a uniformly
random solution.

The continuous greedy algorithm can be also applied to
problems where the underlying matroid is exponentially large.
Our algorithm provides a (1 − e−α)-approximation, assum-
ing that we have an α-approximation for maximizing cer-
tain linear functions over the matroid. This improves the

3A matroid is a system of “independent sets”, generalizing
the notion of linear independence of vectors [24].



previously known factors of α(1 − 1/e) [11] and α/(1 + α)
[2, 12] in this framework. In particular, we obtain a (1 −
1/e − o(1))-approximation for the Generalized Assignment
Problem (which is suboptimal but more practical than pre-

viously known algorithms [11, 9]), and a (1 − e−1/2 − o(1))-
approximation for the AdWords Assignment Problem (im-
proving the previously known (1/3 − o(1))-approximation
[12]).
Remark. The notion of a continuous greedy algorithm has
been used before. Wolsey proposed a continuous greedy al-
gorithm for the problem of maximizing a “real-valued sub-
modular function” over a knapsack polytope already in 1982
[26]. We note that this algorithm is somewhat different from
ours. Wolsey’s algorithm increases one fractional variable at
a time, the one maximizing local gain. In our setting, his
algorithm in fact reduces to the standard greedy algorithm
which yields only a 1/2-approximation.

Our insight is that a suitable variant of the continuous
greedy method lends itself well to non-linear optimization
problems with certain analytical properties. This bears some
resemblance to gradient descent methods used in continuous
optimization. However, ours is not a continuous process con-
verging to a local optimum; rather, it is a process running
for a fixed amount of time resulting in a globally approxi-
mate solution. We discuss this in Section 3. In Section 4, we
present a discrete version of our algorithm which, combined
with pipage rounding, gives a (1 − 1/e)-approximation for
submodular maximization subject to a matroid constraint.
In the special case of the Submodular Welfare Problem, pi-
page rounding is actually not needed. We present a self-
contained (1 − 1/e)-approximation algorithm in Section 5.
Finally, we discuss a generalization of our framework in Sec-
tion 6.

2. PRELIMINARIES

Smooth submodular functions.
A discrete function f : 2X → R is submodular, if f(S ∪

T ) + f(S ∩ T ) ≤ f(S) + f(T ) for any S, T ⊆ X. As a
continuous analogy, Wolsey [26] defines submodularity for a
function F : [0, 1]X → R as follows:

F (x ∨ y) + F (x ∧ y) ≤ F (x) + F (y) (1)

where (x ∨ y)i = max{xi, yi} and (x ∧ y)i = min{xi, yi}.
Similarly, a function is monotone if F (x) ≤ F (y) whenever
x ≤ y coordinate-wise. In particular, Wolsey works with
monotone submodular functions that are piecewise linear
and in addition concave. In this paper, we use a related
property which we call smooth monotone submodularity.

Definition 2.1. A function F : [0, 1]X → R is smooth
monotone submodular if

• F ∈ C2([0, 1]X ), i.e. it has second partial derivatives
everywhere.

• For each j ∈ X, ∂F
∂yj

≥ 0 everywhere (monotonicity).

• For any i, j ∈ X (possibly equal), ∂2F
∂yi∂yj

≤ 0 every-

where (submodularity).

Thus the gradient ∇F = ( ∂F
∂y1

, . . . , ∂F
∂yn

) is a nonnegative

vector. The submodularity condition ∂2F
∂yi∂yj

≤ 0 means that

∂F
∂yj

is non-increasing with respect to yi. It can be seen that

this implies (1). Also, it means that a smooth submodular
function is concave along any non-negative direction vector;
however, it is not necessarily concave in all directions.

Extension by expectation.
For a monotone submodular function f : 2X → R+, a

canonical extension to a smooth monotone submodular func-
tion can be obtained as follows [2]: For y ∈ [0, 1]X , let ŷ
denote a random vector in {0, 1}X where each coordinate is
independently rounded to 1 with probability yj or 0 other-
wise. Then, define

F (y) = E[f(ŷ)] =
X

R⊆X

f(R)
Y

i∈R

yi

Y

j /∈R

(1 − yj).

This is a multilinear polynomial which satisfies

∂F

∂yj
= E[f(ŷ) | ŷj = 1] − E[f(ŷ) | ŷj = 0] ≥ 0

by monotonicity of f . For i 6= j, we get

∂2F

∂yi∂yj
= E[f(ŷ) | ŷi = 1, ŷj = 1] − E[f(ŷ) | ŷi = 1, ŷj = 0]

− E[f(ŷ) | ŷi = 0, ŷj = 1] + E[f(ŷ) | ŷi = 0, ŷj = 0]

≤ 0

by the submodularity of f . In addition, ∂2F
∂yj

2 = 0, since F

is multilinear.

Matroid polytopes.
We consider polytopes P ⊂ R

X
+ with the property that

for any x, y, 0 ≤ x ≤ y, y ∈ P ⇒ x ∈ P . We call such a
polytope down-monotone.

A down-monotone polytope of particular importance here
is the matroid polytope. For a matroid M = (X, I), the
matroid polytope is defined as

P (M) = conv {1I : I ∈ I}.

As shown by Edmonds [5], an equivalent description is

P (M) = {x ≥ 0 : ∀S ⊆ X;
X

j∈S

xj ≤ rM (S)}.

Here, rM (S) = max{|I | : I ⊆ S & I ∈ I} is the rank
function of matroid M. From this description, it is clear
that P (M) is down-monotone.

Pipage rounding.
A very useful tool that we invoke is a rounding technique

introduced by Ageev and Sviridenko [1], and adapted for the
matroid polytope by Calinescu et al. [2]. We use it here as
the following black box.

Lemma 2.2. There is a polynomial-time randomized al-
gorithm which, given a membership oracle for matroid M =
(X, I), a value oracle for a monotone submodular function
f : 2X → R+, and y ∈ P (M), returns an independent set
S ∈ I of value f(S) ≥ (1−o(1))E[f(ŷ)] with high probability.

The o(1) term can be made polynomially small in n = |X|.
Since any fractional solution y ∈ P (M) can be converted to
an integral one without significant loss in the objective func-
tion, we can consider the continuous problem max{F (y) :
y ∈ P (M)} instead of max{f(S) : S ∈ I}.



Remark. In previous work [2], the pipage rounding tech-
nique was used in conjunction with linear programming to
approximate max{f(S) : S ∈ I} for a special class of sub-
modular functions. However, it is not clear how to write a
linear program for a submodular function without any spe-
cial structure. Therefore, we abandon this approach and
attack the non-linear optimization problem max{F (y) : y ∈
P (M)} directly.

The Submodular Welfare Problem.
It is known that the Submodular Welfare Problem is a spe-

cial case of submodular maximization subject to a matroid
constraint [17]. To fix notation, let us review the reduction
here. Let the set of n players be P , the set of m items Q,
and for each i ∈ P , let the respective utility function be
wi : 2Q → R+. We define a new ground set X = P × Q,
with a function f : 2X → R+ defined as follows: Every set
S ⊆ X can be written uniquely as S =

S

i∈P ({i}×Si). Then
let

f(S) =
X

i∈P

wi(Si).

Assuming that each wi is a monotone submodular function,
it is easy to verify that f is also monotone submodular. The
interpretation of this construction is that we make |P | copies
of each item, one for each player. However, in reality we can
only allocate one copy of each item. Therefore, let us define
a partition matroid M = (X, I) as follows:

I = {S ⊆ X | ∀j; |S ∩ (P × {j})| ≤ 1}.

Then the Submodular Welfare Problem is equivalent to max
{f(S) : S ∈ I}. Due to Lemma 2.2, we know that instead of
this discrete problem, it suffices to consider the non-linear
optimization problem max{F (y) : y ∈ P (M)}. We remark
that in this special case, we do not need the full strength
of Lemma 2.2; instead, y ∈ P (M) can be converted into an
integral solution by simple randomized rounding. We return
to this issue in Section 5.

3. THECONTINUOUSGREEDYPROCESS
In this section, we present the analytic picture behind

our algorithm. This section is not formally needed for our
main result. Our point of view is that the analytic intu-
ition explains why 1 − 1/e arises naturally in problems in-
volving maximization of monotone submodular functions.
We consider any down-monotone polytope P and a smooth
monotone submodular function F . For concreteness, the
reader may think of the matroid polytope and the function
F (y) = E[f(ŷ)] defined in the previous section. Our aim is
to define a process that runs continuously, depending only
on local properties of F , and produces a point y ∈ P ap-
proximating the optimum OPT = max{F (y) : y ∈ P}. We
propose to move in the direction of a vector constrained by
P which maximizes the local gain.

The continuous greedy process.
We view the process as a particle starting at y(0) = 0 and

following a certain flow over a unit time interval:

dy

dt
= v(y),

where v(y) is defined as

v(y) = argmaxv∈P (v · ∇F (y)).

Claim. y(1) ∈ P and F (y(1)) ≥ (1 − 1/e)OPT .
First of all, the trajectory for t ∈ [0, 1] is contained in P ,
since

y(t) =

Z t

0

v(y(τ ))dτ

is a convex linear combination of vectors in P . To prove the
approximation guarantee, fix a point y and suppose that
x∗ ∈ P is the true optimum, OPT = F (x∗). The essence of
our analysis is that the rate of increase in F (y) is equal to
the deficit OPT − F (y). This kind of behavior always leads
to a factor of 1 − 1/e, as we show below.

Consider a direction v∗ = (x∗ ∨ y) − y = (x∗ − y) ∨ 0.
This is a nonnegative vector; since v∗ ≤ x∗ ∈ P and P is
down-monotone, we also have v∗ ∈ P . By monotonicity,
F (y + v∗) = F (x∗∨ y) ≥ F (x∗) = OPT . Note that y + v∗ is
not necessarily in P but this is not an issue. Consider the ray
of direction v∗ starting at y, and the function F (y+ξv∗), ξ ≥
0. The directional derivative of F along this ray is dF

dξ
= v∗ ·

∇F . Since F is smooth submodular and v∗ is nonnegative,
F (y + ξv∗) is concave in ξ and dF

dξ
is non-increasing. By

the mean value theorem, there is some c ∈ [0, 1] such that
F (y + v∗) − F (y) = dF

dξ

˛

˛

ξ=c
≤ dF

dξ

˛

˛

ξ=0
= v∗ · ∇F (y). Since

v∗ ∈ P , and v(y) ∈ P maximizes v · ∇F (y), we get

v(y)·∇F (y) ≥ v∗ ·∇F (y) ≥ F (y+v∗)−F (y) ≥ OPT−F (y).
(2)

Now let us return to our continuous process and analyze
F (y(t)). By the chain rule and using (2), we get

dF

dt
=
X

j

∂F

∂yj

dyj

dt
= v(y(t)) · ∇F (y(t)) ≥ OPT − F (y(t)).

This means that F (y(t)) dominates the solution of the dif-
ferential equation dφ

dt
= OPT − φ(t), φ(0) = 0, which is

φ(t) = (1−e−t)OPT . This proves F (y(t)) ≥ (1−e−t)OPT .

4. SUBMODULAR MAXIMIZATION SUB-

JECT TO A MATROID CONSTRAINT
Let us assume now that the polytope in question is a ma-

troid polytope P (M) and the smooth submodular function
is F (y) = E[f(ŷ)]. We consider the question how to find a
fractional solution y ∈ P (M) of value F (y) ≥ (1−1/e)OPT .
The continuous greedy process provides a guide on how to
design our algorithm. It remains to deal with two issues.

• To obtain a finite algorithm, we need to discretize the
time scale. This introduces some technical issues re-
garding the granularity of our discretization and the
error incurred. We show how to handle this issue for
the particular choice of F (y) = E[f(ŷ)].

• In each step, we need to find v(y) = argmaxv∈P (M)(v ·
∇F (y)). Apart from estimating ∇F (which can be
done by random sampling), observe that this amounts
to a linear optimization problem over P (M). This
means finding a maximum-weight independent set in
a matroid, a task which can be solved easily.

In analogy with Equation (2), we use a suitable bound on
the optimum. Note that ∂F

∂yj
= E[f(ŷ) | ŷj = 1] − E[f(ŷ) |

ŷj = 0]; we replace this by E[fŷ(j)] which works as well and
will be more convenient.



Lemma 4.1. Let OPT = maxS∈I f(S). Consider any
y ∈ [0, 1]X and let R denote a random set corresponding
to ŷ, with elements sampled independently according to yj.
Then

OPT ≤ F (y) + max
I∈I

X

j∈I

E[fR(j)].

Proof. Fix an optimal solution O ∈ I. By submodular-
ity, we have OPT = f(O) ≤ f(R) +

P

j∈O fR(j) for any set
R. By taking the expectation over a random R as above,
OPT ≤ E[f(R) +

P

j∈O fR(j)] = F (y) +
P

j∈O E[fR(j)] ≤

F (y) + maxI∈I

P

j∈I E[fR(j)].

The Continuous Greedy Algorithm.

Given: matroid M = (X, I), monotone submodular function
f : 2X → R+.

1. Let δ = 1/n2 where n = |X|. Start with t = 0 and
y(0) = 0.

2. Let R(t) contain each j independently with probability
yj(t). For each j ∈ X, estimate

ωj(t) = E[fR(t)(j)].

by taking the average of n5 independent samples.

3. Let I(t) be a maximum-weight independent set in M,
according to the weights ωj(t). We can find this by
the greedy algorithm. Let

y(t + δ) = y(t) + δ · 1I(t).

4. Increment t := t + δ; if t < 1, go back to Step 2.
Otherwise, return y(1).

The fractional solution found by the continuous greedy al-
gorithm is a convex combination of independent sets, y(1) =
δ
P

t 1I(t) ∈ P (M). In the second stage of the algorithm,
we take the fractional solution y(1) and apply pipage round-
ing to it. Considering Lemma 2.2, it suffices to prove the
following.

Lemma 4.2. The fractional solution y found by the Con-
tinuous Greedy Algorithm satisfies with high probability

F (y) = E[f(ŷ)] ≥

„

1 −
1

e
− o(1)

«

· OPT.

Proof. We start with F (y(0)) = 0. Our goal is to es-
timate how much F (y(t)) increases during one step of the
algorithm. Consider a random set R(t) corresponding to
ŷ(t), and an independently random set D(t) that contains
each item j independently with probability ∆j(t) = yj(t +
δ) − yj(t). I.e., ∆(t) = y(t + δ) − y(t) = δ · 1I(t) and D(t)
is a random subset of I(t) where each element appears in-
dependently with probability δ. It can be seen easily that
F (y(t + δ)) = E[f(R(t + δ))] ≥ E[f(R(t) ∪ D(t))]. This
follows from monotonicity, because R(t + δ) contains items
independently with probabilities yj(t) + ∆j(t), while R(t)∪
D(t) contains items independently with (smaller) probabil-
ities 1 − (1 − yj(t))(1 − ∆j(t)).

Now we are ready to estimate how much F (y) gains at
time t. It is important that the probability that any item
appears in D(t) is very small, so we can focus on the contri-
butions from sets D(t) that turn out to be singletons. From

the discussion above, we obtain

F (y(t + δ)) − F (y(t)) ≥ E[f(R(t) ∪ D(t)) − f(R(t))]

≥
X

j

Pr[D(t) = {j}] E[fR(t)(j)]

=
X

j∈I(t)

δ(1 − δ)|I(t)|−1
E[fR(t)(j)]

≥ δ(1 − nδ)
X

j∈I(t)

E[fR(t)(j)].

Recall that I(t) is an independent set maximizing
P

j∈I ωj(t)

where ωj(t) are our estimates of E[fR(t)(j)]. By standard
Chernoff bounds, the probability that the error in any es-
timate is more than OPT/n2 is exponentially small in n
(note that OPT ≥ maxR,j fR(j)). Hence, w.h.p. we in-
cur an error of at most OPT/n in our computation of the
maximum-weight independent set. Then we can write

F (y(t + δ)) − F (y(t))

≥ δ(1 − nδ)

 

max
I∈I

X

j∈I

E[fR(t)(j)] − OPT/n

!

≥ δ(1 − 1/n)(OPT − F (y(t))− OPT/n)

≥ δ( ˜OPT − F (y(t)))

using Lemma 4.1, δ = 1/n2 and setting ˜OPT = (1−2/n)OPT .

From here, ˜OPT − F (y(t + δ)) ≤ (1 − δ)( ˜OPT − F (y(t)))

and by induction, ˜OPT − F (y(kδ)) ≤ (1 − δ)k ˜OPT . For
k = 1/δ, we get

˜OPT − F (y(1)) ≤ (1 − δ)1/δ ˜OPT ≤
1

e
˜OPT .

Therefore, F (y(1)) ≥ (1−1/e) ˜OPT ≥ (1−1/e−o(1))OPT .

Remark. By a more careful analysis, we can eliminate
the error term and achieve a clean approximation factor
of 1 − 1/e. We can argue as follows: Rather than R(t) ∪

D(t), we can consider R(t) ∪ D̃(t), where D̃(t) is indepen-
dent of R(t) and contains each element j with probability
∆j(t)/(1 − yj(t)). It can be verified that R(t + δ) = R(t) ∪

D̃(t). Hence the analysis goes through with D̃(t) and we

get F (y(t+ δ))−F (y(t)) ≥
P

j Pr[D̃(t) = {j}]E[fR(t)(j)] ≥

δ(1 − nδ)
P

j∈I(t) E[fR(t)(j)]/(1 − yj(t)). Observe that this

is equivalent to our previous analysis when yj(t) = 0, but
we get a small gain as the fractional variables increase.

Denote ω∗(t) = maxj ωj(t). The element achieving this is
always part of I(t). By Lemma 4.1 and submodularity, we

know that at any time, ω∗(t) ≥ 1
n
( ˜OPT − F (y(t))), where

˜OPT = (1 − o(1))OPT depends on the accuracy of our
sampling estimates. Also, if j∗(t) is the element achieving
ω∗(t), we know that yj∗(t)(t) cannot be zero all the time.
Even focusing only on the increments corresponding to j∗(t)
(summing up to 1 overall), at most half of them can occur
when yj∗(t)(t) < 1

2n
. Let’s call these steps ”bad”, and the

steps where yj∗(t)(t) ≥ 1
2n

”good”. In a good step, we have

ω∗(t)/(1− yj∗ (t)) ≥ ω∗(t) + 1
2n

ω∗(t) ≥ ω∗(t) + 1
2n2 ( ˜OPT −

F (y(t))) instead of ω∗(t) in the original analysis. In good
steps, the improved analysis gives

F (y(t + δ)) − F (y(t)) ≥ δ(1 − nδ)(1 +
1

2n2
)( ˜OPT − F (y(t))).



By taking δ = o( 1
n3 ), we get that F (y(t + δ)) − F (y(t)) ≥

δ(1 + nδ)( ˜OPT − F (y(t))). Then, we can conclude that in
good steps, we have

˜OPT − F (y(t + δ)) ≤ (1 − δ − nδ2))( ˜OPT − F (y(t))),

while in bad steps

˜OPT − F (y(t + δ)) ≤ (1 − δ + nδ2))( ˜OPT − F (y(t))).

Overall, we get

F (y(1)) ≥ (1 − (1 − δ + nδ2)
1

2δ (1 − δ − nδ2)
1

2δ ) ˜OPT

≥ (1 − (1 − δ)1/δ) ˜OPT ≥ (1 − 1/e + Ω(δ)) ˜OPT .

We can also make our sampling estimates accurate enough
so that ˜OPT = (1−o(δ))OPT . We conclude that F (y(1)) ≥
(1 − 1/e + Ω(δ))OPT .

Pipage rounding. Finally, we use pipage rounding to con-
vert y into an integral solution. Using Lemma 2.2, we obtain
an independent set S of value f(S) ≥ (1 − 1/e)OPT w.h.p.

5. SUBMODULAR WELFARE
In this section, we return to the Submodular Welfare Prob-

lem. We deal with a partition matroid M here which allows
us to simplify our algorithm and avoid the technique of pi-
page rounding. For a set of players P and a set of items Q,
the new ground set is X = P × Q, hence it is natural to
associate variables yij with player-item pairs. The variable
expresses the extent to which item j is allocated to player i.
In each step, we estimate the expected marginal value ωij of
element (i, j), i.e. the expected marginal profit that player i
derives from adding item j. With respect to these weights,
we find a maximum independent set in M; this means se-
lecting a preferred player for each item j, who derives the
maximum marginal profit from j. Then we increase the re-
spective variable for each item and its preferred player.

The partition matroid polytope can be written as

P (M) = {y ≥ 0 : ∀j;

n
X

i=1

yij ≤ 1}.

The continuous greedy algorithm finds a point y ∈ P (M) of
value F (y) ≥ (1 − 1/e)OPT . Here,

F (y) = E[f(ŷ)] =

n
X

i=1

E[f(Ri)]

where Ri contains each item j independently with proba-
bility yij . Formally, the sets Ri should also be sampled
independently for different players, but this does not af-
fect the expectation. We can modify the sampling model
and instead allocate each item independently to exactly one
player, item j to player i with probability yij . This is possi-
ble because

Pn
i=1 yij ≤ 1, and yields a feasible allocation of

expected value F (y). We obtain the following self-contained
algorithm.

The Continuous Greedy Algorithm for Submodular

Welfare.

1. Let δ = 1/(mn)2. Start with t = 0 and yij(0) = 0 for
all i, j.

2. Let Ri(t) be a random set containing each item j inde-
pendently with probability yij(t). For all i, j, estimate
the expected marginal profit of player i from item j,

ωij(t) = E[wi(Ri(t) + j) − wi(Ri(t))]

by taking the average of (mn)5 independent samples.

3. For each j, let ij(t) = argmaxi ωij(t) be the preferred
player for item j (breaking possible ties arbitrarily).
Set yij(t + δ) = yij(t) + δ for the preferred player i =
ij(t) and yij(t + δ) = yij(t) otherwise.

4. Increment t := t + δ; if t < 1, go back to Step 2.

5. Allocate each item j independently, with probability
yij(1) to player i.

Lemma 4.2 and the discussion above imply our main result.

Theorem 5.1. The Continuous Greedy Algorithm gives
a (1 − 1/e − o(1))-approximation (in expectation) for the
Submodular Welfare Problem in the value oracle model.

Remark 1. Our choices of δ and the number of random
samples are pessimistic and can be improved in this special
case. Again, the o(1) error term can be eliminated by a
more careful analysis. We believe that our algorithm is quite
practical, unlike the (1− 1/e)-approximation using demand
queries [4], or its improvement [9], which both require the
ellipsoid method.
Remark 2. In the special case where all n players have
the same utility function, we do not need to run any non-
trivial algorithm at all. It can be seen from the continuous
greedy process (Section 3) that in such a case the greedy
trajectory is equal to yij(t) = 1

n
t for all i, j (WLOG - out

of all optimal directions, we pick the symmetric one, v =
( 1

n
, . . . , 1

n
)). Hence, the fractional solution that we obtain is

yij = 1
n

for all i, j and we know that it satisfies F (y) ≥ (1−
1/e)OPT . Thus, a (1 − 1/e)-approximation is obtained by
allocating each item uniformly at random. It is interesting
to note that the hardness results [15, 19] hold even in this
special case. Therefore, the problem of n equal submodular
utility functions is approximation resistant in the sense that
it is impossible to beat a blind random solution.

5.1 Counterexample to a possible simplifica-
tion of the algorithm

Here we consider a possible way to simplify our continu-
ous greedy algorithm. Instead of applying pipage rounding
or randomized rounding to the fractional solution y(1) =
δ
P

t 1I(t), it seems reasonable to compare all the indepen-
dent sets I(t) in this linear combination and return the most
valuable one. However, the non-linearity of the objective
function defeats this intuitive approach. Quite surprisingly,
the value of each I(t) can be an arbitrarily small fraction of
OPT.

Example. Consider an instance arising from the Submod-
ular Welfare Problem, where we have n players and n items.
The utility of each player is equal to w(S) = min{|S|, 1};
i.e., each player wants at least one item. Obviously, the op-
timal solution assigns one item to each player, which yields
OPT = n.

The continuous greedy algorithm (see Section 5) builds a
fractional solution y. Given a partial solution after a certain



number of steps, we consider the random sets Ri defined by
y and the expected marginal values given by

ωij = E[w(Ri + j) − w(Ri)] = Pr[Ri = ∅] =
n
Y

j=1

(1 − yij).

A preferred player is chosen for each item by selecting the
largest ωij and incrementing the respective variable yij . The
algorithm may run in such a way that in each step, yij(t) =
βi(t) for all j, and the preferred player for all items is the
same. This is true at the beginning (yij(0) = 0), and
assuming inductively that yij(t) = βi for all j, we have
ωij = (1 − βi)

n. The choice of a preferred player for each
item is given by minimizing βi, and we can assume that the
algorithm selects the same player i∗ for each item. In the
next step, we will have yij(t + δ) = βi + δ if i = i∗, and βi

otherwise. Hence again, yij(t + δ) depends only on i.
Eventually, the algorithm finds the fractional solution yij =

1/n for all i, j. By randomized rounding (or pipage round-
ing), we obtain expected value n(1− (1− 1/n)n). However,
the solution found by the continuous greedy algorithm in
each step consists of all items being assigned to the same
player, which yields value 1.

6. OTHER APPLICATIONS
Finally, let us discuss a generalization of our framework.

Let us consider a setting where we cannot optimize linear
functions over P exactly, but only α-approximately (α < 1).
Let us consider the continuous setting (Section 3). Assume
that in each step, we are able to find a vector v(y) ∈ P such
that v(y) · ∇F (y) ≥ α maxv∈P v · ∇F (y) ≥ α(OPT −F (y)).
This leads to a differential inequality

dF

dt
≥ α(OPT − F (y(t)))

whose solution is F (y(t)) ≥ (1 − e−αt)OPT . At time t = 1,
we obtain a (1−e−α)-approximation. The rest of the analy-
sis follows as in Section 4. This has interesting applications.

The Separable Assignment Problem.
An instance of the Separable Assignment Problem (SAP)

consists of m items and n bins. Each bin i has an asso-
ciated collection of feasible sets Fi which is down-closed
(A ∈ Fi, B ⊆ A ⇒ B ∈ Fi). Each item j has a value
vij , depending on the bin i where it’s placed. The goal is
to choose disjoint feasible sets Si ∈ Fi so as to maximize
Pn

i=1

P

j∈Si
vij .

Reduction to a matroid constraint. Let us review the
reduction from [2]. We define X = {(i, S) | 1 ≤ i ≤ n, S ∈
Fi} and a function f : 2X → R+,

f(S) =
X

j

max
i

{vij : ∃(i, S) ∈ S , j ∈ S}.

It is clear that f is monotone and submodular. We maximize
this function subject to a matroid constraint M = (X, I),
where S ∈ I iff S contains at most one pair (i, S) for each i.
Such a set S corresponds to an assignment of set S to bin i
for each (i, S) ∈ S . This is equivalent to SAP: although the
bins can be assigned overlapping sets in this formulation,
we only count the value of the most valuable assignment for
each item.

The continuous greedy algorithm for SAP. The ground
set of M is exponentially large here, so we cannot use the al-
gorithm of Section 4 as a black box. First of all, the number
of steps in the continuous greedy algorithm depends on the
discretization parameter δ. It can be seen that it is sufficient
here to choose δ polynomially small in the rank of M, which
is n. The algorithm works with variables corresponding to
the ground set X; let us denote them by xi,S where S ∈ Fi.
Note that in each step, only n variables are incremented
(one for each bin i) and hence the number of nonzero vari-
ables remains polynomial. Based on these variables, we can
generate a random set R ⊂ X in each step. However, we
cannot estimate all marginal values ωi,S = E[fR(i, S)] since
these are exponentially many. What we do is the following.

For each element j, we estimate ωij = E[fR(i, j)], where
fR(j) = f(R + (i, j)) − f(R), the marginal profit of adding
item j to bin i, compared to its assignment in R. Then
ωi,S =

P

j∈S ωij for any set S. Finding a maximum-weight
independent set I ∈ I means finding the optimal set Si for
each bin i, given the weights ωi,S. This is what we call the
single-bin subproblem. We use the item weights ωij and try
to find a set for each bin maximizing

P

j∈S ωij . If we can

solve this problem α-approximately (α < 1), we can also
find an α-approximate maximum-weight independent set I .
Consequently, we obtain a (1 − e−α)-approximation for the
Separable Assignment Problem. This beats both the factor
α(1− 1/e) obtained by using the Configuration LP [11] and
the factor α/(1 + α) obtained by a simple greedy algorithm
[2, 12].

The Generalized Assignment Problem.
Special cases of the Separable Assignment Problem are

obtained by considering different types of collections of fea-
sible sets Fi. When each Fi is given by a knapsack prob-
lem, Fi = {S :

P

j∈S sij ≤ 1}, we obtain the Generalized

Assignment Problem (GAP). Since there is an FPTAS for
the knapsack problem, we have α = 1 − o(1) and we obtain
a (1 − o(1))-approximation for the Generalized Assignment
Problem. We remark that a (1−1/e+ǫ)-approximation can
be achieved for some very small ǫ > 0, using an exponen-
tially large “Configuration LP” and the ellipsoid method [9];
in comparison, our new algorithm is much more practical.

The AdWords Assignment Problem.
A related problem defined in [11] is the AdWords Assign-

ment Problem (AAP). Here, bins correspond to rectangular
areas associated with keywords where certain ads can be
displayed. Each bidder has a rectangular ad of given dimen-
sions that might be displayed in multiple areas. Bidder j
is willing to pay vij to have his ad displayed in area i, but
overall his spending is limited by a budget Bj .

A reduction to submodular maximization subject to a ma-
troid constraint is given in [12]. We have a ground set
X = {(i, S) : S ∈ Fi} where Fi is the collection of feasi-
ble sets of ads that fit in area i. The matroid constraint is
that we choose at most one set S for each area i. The sets
are not necessarily disjoint. The objective function is

f(S) =
X

j

min

8

<

:

X

(i,S)∈S:j∈S

vij , Bj

9

=

;

.



Again, this function is monotone and submodular. Given
a random assignment R, the expected marginal value of an
element (i, S) can be written as E[fR(i, S)] =

P

j∈S ωij ,

where ωij = E[Vj(R + (i, j)) − Vj(R)], and Vj(R) is the
amount spent by bidder j in R. We can estimate the val-
ues ωij by random sampling and then find a (1/2 − o(1))-
approximation to maxS∈Fi E[fR(i, S)] by using the rect-
angle packing algorithm of [14] with weights ωij . Conse-
quently, we can approximate the maximum-weight indepen-
dent set within a factor of 1/2 − o(1) in each step and

obtain a (1 − e−1/2 − o(1))-approximation for AAP. This
beats the 1

2
(1 − 1/e)-approximation given in [11] and also

the ( 1
3
− o(1))-approximation in [12].
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non-monotone submodular functions, Proc. of 48th
FOCS (2007), 461–471.
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